References
- A. A. Albert, Symmetric and alternate matrices in an arbitrary field. I, Trans. Amer. Math. Soc. 43 (1938), no. 3, 386-436. https://doi.org/10.1090/S0002-9947-1938-1501952-6
- A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, Vol. IV, Math. Sci. Press, Brookline, Mass., 1975.
-
W. Baily, Satake's compactification of
$V^*_n $ , Amer. J. Math. 80 (1958), 348-364. https://doi.org/10.2307/2372789 - W. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math. 84 (1966), 442-528. https://doi.org/10.2307/1970457
- C. Birkenhake and H. Lange, Complex Tori, Progress in Mathematics, 177. Birkhauser Boston, Inc., Boston, 1999.
- H. Comessati, Sulle varieta abeliane reali. I, II, Ann. Mat. Pura. Appl. 2 (1924), 67-106
- H. Comessati, Sulle varieta abeliane reali. I, II, Ann. Mat. Pura. Appl 4 (1926), 27-72.
- G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergebnisse der Math. 22, Springer-Verlag, Berlin-Heidelberg-New York, 1990.
- M. Goresky and Y. S. Tai, The moduli space of real abelian varieties with level structure, Compositio Math. 139 (2003), no. 1, 1-27. https://doi.org/10.1023/B:COMP.0000005079.56232.e3
- S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
- J. Igusa, Theta Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- M. Itoh, On the Yang Problem (SFT), preprint, Max-Planck Institut fur Mathematik, Bonn, 2011.
- A.W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986.
- H. Lange and C. Birkenhake, Complex Abelian Varieties, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1992.
- H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- Y. Matsushima, On the intermediate cohomology group of a holomorphic line bundle over a complex torus, Osaka J. Math. 16 (1979), no. 3, 617-631.
- H. Minkowski, Gesammelte Abhandlungen, Chelsea, New York, 1967.
- D. Mumford, Abelian Varieties, Oxford University Press, 1970; Reprinted, 1985.
- I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc. 20 (1956), 259-281.
- I. Satake, Algebraic Structures of Symmetric Domains, Kano Memorial Lectures 4, Iwanami Shoton, Publishers and Princeton University Press, 1980.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemann- ian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
- M. Seppala and R. Silhol, Moduli spaces for real algebraic curves and real abelian vari- eties, Math. Z. 201 (1989), no. 2, 151-165. https://doi.org/10.1007/BF01160673
- G. Shimura, On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II (1975), no. 17, 261-268.
- C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86 https://doi.org/10.2307/2371774
- C. L. Siegel, Symplectic geometry, Academic Press, New York and London, 1964
- Gesammelte Abhandlungen, no. 41, vol. II, 274-359, Springer-Verlag, 1966,
- R. Silhol, Real Abelian varieties and the theory of Comessatti, Math. Z. 181 (1982), no. 3, 345-364. https://doi.org/10.1007/BF01161982
- R. Silhol,, Real Algebraic Surfaces, Lecture Notes in Math. 1392, Springer-Verlag, Berlin- Heidelberg-New York, 1989.
- R. Silhol,, Compactifications of moduli spaces in real algebraic geometry, Invent. Math. 107 (1992), no. 1, 151-202. https://doi.org/10.1007/BF01231886
- J.-H. Yang, A note on holomorphic vector bundles over complex tori, Bull. Korean Math. Soc. 23 (1986), no. 2, 149-154.
- J.-H. Yang, Holomorphic vector bundles over complex tori, J. Korean Math. Soc. 26 (1989), no. 1, 117-142.
- J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
- J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
- J.-H. Yang, Remark on harmonic analysis on the Siegel-Jacobi space, arXiv:1107.0509v1 [math.NT], 2009.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chin. Ann. Math. Ser. B 31 (2010), no. 1, 85-100. https://doi.org/10.1007/s11401-008-0348-7
- J.-H. Yang, Invariant differential operators on the Siegel-Jacobi space and Maass-Jacobi forms, Proceedings of the International Conference on Geometry, Number Theory and Representation Theory, 39-63, KM Kyung Moon Sa, Seoul, 2013.
- J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. KoreanMath. Soc. 50 (2013), no. 2, 275-306.