• Title/Summary/Keyword: $^14 C$

Search Result 14,733, Processing Time 0.044 seconds

A Comparative Study of Primary Production by using the $^{14}C$ and Oxygen Methods ($^{14}C$ - 법과 산소법에 의한 일차생산 비교연구)

  • 심재호;강성현
    • 한국해양학회지
    • /
    • v.21 no.2
    • /
    • pp.73-84
    • /
    • 1986
  • Photometric Winkler titration provides high precision enough to use the oxygen method in moderately productive waters In short incubation (2-4hr), about $2{\mu\textrm{g}}C/\ell/h$ can be differentiated by the photometric titration. The oxygen and $^{14}C$ methods resulted in good agreement with each other in the diurnal primary production measurements. Despite small descrepancies the severe underestimation of $^{14}C-technique$ was not observed in short-term incubation. Size-fractionated production studies indicated the importance of nanoplanktonic production in the coastal water (62-88%). Bacterial respiration may lead to significant underestimation in estimating net photosynthesis in the oxygen method. In spite of some problems associated with the ecological application of antibiotics, it seems feasible to use Gentamycin in separating planktonic respiration from that of total community.

  • PDF

Assessment of Internal Dose by $^3H\;&\;^{14}C$ of Total Diet for Inhabitants near Wolsung Nuclear Power Plants

  • Park, G.;Lin, X.J.;Kim, W.;Kang, H.D.;Doh, S.H.;Kim, D.S.;Kim, C.K.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • To assess the internal dose by $^3H\;&\;^{14}C$ in total diet of inhabitants near Wolsung Nuclear Power Plants, TFWT, OBT and $^{14}C$ concentration in total diet was analyzed for collection region and time. TFWT, OBT and $^{14}C$ concentrations were in the range of 3.19-42.2 Bq/L, 1.00-39.4 Bq/L, and 0.230-0.855 Bq/gC, respectively. The calculated annual effective dose with TFWT, OBT and $^{14}C$ is $6.10{\times}10^{-5}mSv/y,\;3.71{\times}10^{-5}mSv/y\;and\;7.08{\times}10^{-3}mSv/y$, respectively. And then annual internal dose with total diet for inhabitants near Wolsung NPPs is about $7.18{\times}10^{-3}mSv/y$, which is about 0.72% of annual effective dose limit 1 mSv/y.

$^{14}C$를 함유한 톨루엔의 산화반응 및 액체섬광계수를 이용한 정량적 분석

  • 이흥래;안홍주;송병철;김정석;박순달;한선호;지광용
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.225-225
    • /
    • 2004
  • 원전 1차 냉각계통내 화학첨가제인 amine 또는 과산화수소를 사용하면서 $^{14}N$(n, P)$^{14}C$$^{17}O$(n, $\alpha$)$^{14}C$의 핵반응으로 생성된 $^{14}C$는 냉각수내에서 방사성 폐기물로 존재하게 된다. 이들 방사성 폐기물은 pH에 따라 다르지만 수용액상에서는 대부분 $CO_2$, $H_2CO_3$, ${HCO_3}^-$${CO_3}^{2-}$로 존재하고, 나머지 약 20% 정도는 유기성 탄소로는 메탄이 존재하는 것으로 알려져 있다. 폐이온 교환수지 내에 존재하는 $^{14}C$는 시간이 경과함에 따라서 방향족 화합물로 이온교환이 발생할 수가 있다.(중략)

  • PDF

Position of Source Leaf Affects Translocation and Distribution of $C^{14}$ Photo-Assimilates in Tomato

  • Lee Sang-Gyu;Lee Chiwon W.
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.173-176
    • /
    • 2006
  • The relationship between source leaf position and photo-assimilate translocation and distribution was characterized for tomato (Lycopersicon esculentum Mill) grown in the greenhouse. Three different positions of source leaf on the stem (first node above or below the first fruit cluster and $5^{th}$ node above the first fruit cluster) were tested for their influence on $^{14}CO_2$ assimilation and transfer to different parts of the plant. The leaves at the $5^{th}$ node above the first fruit cluster transferred the highest (57%) proportion of $C^{14}$ to other plant parts, followed by leaves home on the first node below the first fruit cluster (50%), and the first node above the first fruit cluster (39%). In all treatments, fruits served as the strongest sink for $C^{14}$, followed by stem, leaf, and root tissues. The leaf home on the $5^{th}$ node above the first fruit cluster transferred the largest amount of $C^{14}$ to the second fruit cluster.

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.) (한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

Translocation of $^14$C-assimilates During Grain Filling and Influence of Defoliation and Emasculation on Grain Weight in Oats (연맥 등숙기 동안 $^14$C물질의 전유와 절엽 및 제영이 종실중에 미치는 영향)

  • 이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.4
    • /
    • pp.38-44
    • /
    • 1979
  • $^14$C-sucrose was labeled on detached panicles and $^14{CO}_2$ on flag leaves or panicles of intact plants to study grain sink activity in spring oats cultivar Pennfield. Defoliation and emasculation experiment was conducted to study source-sink relationship during grain filling. Specific activity of groat rose up to 15 days after anthesis and declined rapidly to 18 days. Daily gain of groat wt. matched closely with specific activity of. groat during grain filling. Primary groats were higher in specific activity of groat than secondary groats.$^14{CO}_2$ exposure on panicle was three times higher in specific activity of groat than $^14{CO}_2$exposure on flag leaf. In the defoliation and emasculation experiment, groat wt. of Pennfield oats decreased as ratio of source/sink decreased. Half number of spikelets with half leaf area was no different in groat wt. compared to control, but normal number of spikelets with zero leaf area was decreased 16% in groat wt., indicating a significant compensation by green area on panicle.

  • PDF

Accelerator Mass Spectrometry in Environmental Research (가속기 질량 분광분석법을 이용한 환경 연구)

  • 문창범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.421-428
    • /
    • 2000
  • Accelerator Mass Spectrometry (AMS) is presented for the applications to the environmental research. Traditionally the radiocarbon (14C) measurements have been made for the purpose of dating the archaeological and geological samples. 14C measurements using AMS however have become the more useful methods for the study of environmental science such as antropogenic modification of atmosphere and the determination of mixing ratios of fossil and biomass products. Such 14C AMS measurements have been extended to the discovery of new chemical tracers for investigations of sources of excessive contributions of CO2, CO, CH4 and other carbon-bearing molecules in the atmosphere.

  • PDF

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF

Comparison of 14C-radioactivity in rice-paddy soil exposed to atmospheric and elevated CO2 conditions after 14C-carbaryl treatment

  • Kim, Han-Yong;Kim, Seon-Hwa;Kim, Hyang-Yeon;Kim, Seul-Ki;Kim, In-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.82-85
    • /
    • 2009
  • This study was performed to investigate if elevated $CO_2$ affects the residue pattern of $^{14}C$ in the soil environment after $^{14}C$-carbaryl treatment $^{14}C$-carbaryl was applied on the rice plant-grown greenhouse soil exposed to atmospheric and elevated $CO_2$ conditions. $^{14}C$-radioactivity was measured in the rhizospheric soil and rice straw samples six months after $^{14}C$-carbaryl application. Significantly high radioactivity was observed in the soil exposed to atmospheric $CO_2$ as compared to that in the soil exposed to elevated C(h. Background level of radioactivity was observed in rice plant samples. These observations suggest the possibility that elevated $CO_2$ may affect residual radioactivity of $^{14}C$-carbaryl in the soil rather than that in the plant.