DOI QR코드

DOI QR Code

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.)

한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향

  • Oh, Soonja (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Moon, Kyung Hwan (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2016.03.11
  • Accepted : 2016.08.30
  • Published : 2017.02.28

Abstract

We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

본 연구는 기후변화에 대응한 마늘(Alliumsativum L.)의 생육 전반에 미치는 온도 스트레스의 영향을 밝히고 적합한 재배온도를 알아보기 위하여 주야간 온도를 달리한 SPAR 챔버 내에서 마늘을 재배하고 그 생육 특성과 광계II 활성, 수확기 인경 및 인편의 특성 등을 조사하였다. 온도처리 초기에는 온도가 높을수록 지상부 생육이 양호하였다. 그러나 수확기에는 $14/10-17/12^{\circ}C$에서 엽초경이 크게 감소하여, $14/10-17/12^{\circ}C$가 인경의 정상적인 발육에 적합함을 알 수 있었다. 수확기 인경 두께와 인경 길이는 $14/10-23/18^{\circ}C$에서 크게 발달하였으며, 인경의 중량은 $17/12-20/15^{\circ}C$에서 가장 무거웠다. 인경 당 인편 발생률도 $17/12-20/15^{\circ}C$에서 가장 높았으나, 인경 당 정상적인 인편 발생률은 그보다 낮은 $14/10-17/12^{\circ}C$에서 가장 양호하였다. 인편의 크기와 무게도 $14/10-17/12^{\circ}C$에서 재배하였을 때 가장 크고 무거웠다. 광계II의 최대 광화학적 효율($F_v/F_m$)과 잠재적 광합성능($F_v/F_o$)은 $14/10-20/15^{\circ}C$ 범위에서 가장 높았고 그 이상 또는 이하의 온도에서는 감소하여, $14/10-20/15^{\circ}C$의 온도 범위가 마늘의 생육에 우호적임을 알 수 있다. 그러나, $20/15^{\circ}C$ 이상의 온도에서는 잎줄기가 터지거나 마늘통이 갈라지거나 벌마늘을 형성하는 등의 이차생장 현상을 관찰할 수 있었다. 따라서, 이차생장 발생률을 낮추면서 상품성이 높은 마늘을 생산하기 위해서는 재배기간 동안 $14/10-17/12^{\circ}C$에서 재배하는 것이 바람직한 것으로 나타났다.

Keywords

References

  1. Ball MC, Butterworth JA, Roden JS, Christian R, Egerton JJG, Wydrzynski TJ, Chow WS, Badger MR (1995) Applications of chlorophyll fluorescence to forest ecology. Aust J Plant Physiol 22:311-319. doi:10.1071/PP9950311
  2. Bandara MS, Krieger K, Slinkard AE, Tanino KK (2000) Pre-plant chilling requirements for cloving of spring-planted garlic. Can J Plant Sci 80:379-384. doi:10.4141/P99-074
  3. Cho J, Lee SK (2008) Current research status of postharvest technology of garlic (Allium sativum L.). Korean J Hortic Sci Technol 26:350-356
  4. Choi HS, Yang EY, Chae WB, Kwack YB, Kim HK (2009) Effect of soil temperature, seedtime, and fertilization rate on the secondary growth in the cultivation of the big bulbils of namdo garlic (Allium sativum L.). J Bio-Environ Control 18:454-459
  5. del Pozo AL, Gonzalez MIA (2005) Developmental responses of garlic to temperature and photoperiod. Agric Tech 65:119-126. doi:10.4067/S0365-28072005000200001
  6. Du H, Zhou P, Huang B (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in a cool-season perennial grass species. Environ Exp Bot 87:159-166. doi:10.1016/j.envexpbot.2012.09.009
  7. Fleisher DH, Timlin DJ, Yang Y, Reddy VR, Reddy KR (2009) Uniformity of soil-plant-atmosphere-research chambers. Trans ASAE 52:1721-1731. doi:10.13031/2013.29134
  8. Guo YP, Zhou HF, Zhang LC (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260-267. doi:10.1016/j.scienta.2006.01.029
  9. Hwang JM, Tae GS (2000) Changes of microclimates and garlic growth in outdoor by mulching and tunnel treatments. J Kor Soc Hort Sci 41:27-30
  10. Kamenetsky R, Shafir IL, Zemah H, Barzilay A, Rabinowitch HD (2004) Environmental control of garlic growth and florogenesis. J Am Soc Hort Sci 129:143-146
  11. Krontal Y, Kamenetsky R, Rabinowitch HD (2000) Flowering physiology and some vegetative traits of short-day shallot: A comparison with bulb onion. J Hort Sci Biotechnol 75:35-41. doi:10.1080/14620316.2000.11511197
  12. Lee EJ, Suh JK (2009) Effect of temperature on the growth, pyruvic acid and sugar contents in onion bulbs. Korean J Hortic Sci Technol 27:554-559
  13. Lee KC, Kim HS, Noh HS, Kim JW, Han SS (2012) Comparison of photosynthetic responses in Allium microdictyon Prokh and Allium ochotense Prokh from atmosphere-leaf vapor pressure deficit(VPD). Korean J Medicinal Crop Sci 20:171-176. doi:10.7783/KJMCS.2012.20.3.171
  14. Mathew D, Ahmed Z, Singh N (2005) Formulation of flowering index, morphological relationships, and yield prediction system in true garlic aerial seed bulbil production. HortSci 40:2036-2039
  15. Moravcevic D, Bjelic V, Savic D, Varga JG, Beatovic D, Jelacic S, Zaric V (2011) Effect of plant density on the characteristics of photosynthetic apparatus of garlic (Allium sativum var. vulgare L.). Afr J Biotechnol 10:15861-15868. doi:10.5897/AJB11.105
  16. Oh S, Moon KH, Son IC, Song EY, Moon YE, Koh SC (2014) Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean J Hortic Sci Technol 32:318-329. doi:10.7235/hort.2014.13174
  17. Oh S, Moon KH, Koh SC (2015) Assessment of high temperature impacts on early growth of garlic plant (Allium sativum L.) through monitoring of photosystem II activities. Korean J Hortic Sci Technol 33:829-838. doi:10.7235/hort.2015.15078
  18. Rahim MA, Fordham R (2001) Environmental manipulation for controlling bulbing in garlic. Acta Horticul 555:181-188. doi:10.17660/Acta Hortic 2001.555.27
  19. Reddy KR, Hodges HF, Read JJ, McKinion JM, Baker JT, Tarpley L, Reddy VR (2001) Soil-plant-atmosphere-research (SPAR) facility: A tool for plant research and modelling, Biotronics 30:27-50
  20. Sohn EY, Kim YH, Kim BS, Seo DH, Lee HS, Lee IJ (2010) Changes in endogenous gibberellin contents during bulb development period in the cold-type cultivar of garlic (Allium sativum L.) of Korea. Korean J Hortic Sci Technol 28:750-756
  21. Song IG, Hwang SG, Lee JK (2001) Garlic cultivation. Rural Development Administration, Sammi Publishing Company, Suwon, Korea
  22. Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: The JIP test. p.977-980. In: Mathis P (ed.), Photosynthesis: From Light to Biosphere. Kluwer Academic, Dordrecht, Netherlands
  23. Takagi H (1990) Garlic Allium sativum L. P.109-146. In: Brewster JL, Rabinowitch HD (eds.). Onions and Allied Crops III: Biochemistry, Food Science, and Minor Crops. CRC Press, Boca Raton, Florida. USA