• Title/Summary/Keyword: $^1$ $O_2$ reaction rate constant

Search Result 142, Processing Time 0.024 seconds

The Kinetics Study of Ozone with Sulfur Dioxide in the Gas Phase (기체 상태에서의 오존과 아황산가스의 반응연구)

  • Young Sik Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 1991
  • The kinetic of the gas phase reactions of ozone(0.5 torr) with sulfur dioxide was studied. The SO2 reaction was conducted in the 7∼22 torr range at 90∼155$^{\circ}$C. The reaction rate was faster than the reaction rate of O$_3$ in the presence of CO$_2$ alone. The reaction of O$_3$ with SO$_2$ follows the rate law: -d(O$_3)/dt=k_0(SO_2)(M)(O_3)+2k _1(SO_2)(O_3$). The first term of this rate law arises from a third order molecular reaction predominating in the lower temperature range and gave a rate constant k$_0$ = (9.35 $\pm$ 8.6) ${\times}$ 10$^9$e$^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The second term of the above rate law derived from a second order thermal decomposition reaction which was the major part of the reaction and gave a rate constant k$_0 =(9.35{\pm}8.6){\times}10^9e^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The overall reaction proceeds with kinetics of complex order composed mainly of second order and third order components.

  • PDF

Treatment of nitrobenzene-cotaminated Wastewater using Oxidation Reaction (산화제를 이용한 니트로벤젠 함유 폐수 처리)

  • 신진환;손종렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • This study explored for treatment processes by investigating the treatment efficiency and reaction mechanism through oxidation reaction using UV and $O_3$ as oxidant in compensate the wastewater containing nitrobenzene that is non biodegradable organic. Also by modeling these reactions, we try to step explanation of optimum reaction rate and reaction mechanism as the development of the computer program predictable the reaction rate by modeling the reaction. By using this model, after kinetic constant for each reaction from an experimental data is made an optimization and for hardly contribute to reaction rate in reaction kinetic equation is made an ignorance and suppose the simplified reaction mechanism, examined the propriety of computer simulation model and simplified reaction mechanism by comparing and inspecting the reaction kinetic constant and masstransfer coefficient. An investigation results for destructional treatment of nitrobenzene in the wastewater as non-biddegradable organic using UV, $O_3{\;}O_2{\;}H_2O_2-UV$ as oxidant.

A Study on the reaction rate constant by UV Photooxidation and Photo-catalytic oxidation process (광산화 및 광촉매 공정에서 VOCs의 산화반응 속도 산출에 관한 연구)

  • Jeong, Chang Hun;Lee, Gyeong Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.37-40
    • /
    • 2004
  • In this study, the decomposition of gas-phase TCE, Benzene and Toluene, in air streams by direct UV Photolysis and UV/TiO$_2$ process was studied. For direct UV Photolysis, by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene and Benzene in this work were determined to be 0.00392s$\^$-l/, 0.00230s$\^$-1/ and 0.00126s$\^$-1/, respectively. And the adsorption constant K of TCE, Toluene and Benzene in this work were determined to be 0.0519 mol$\^$-l/ ,0.0313mo1$\^$-1/ and 0.0084mo1$\^$-1/, respectively. For UV/TiO$_2$ system by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene, and Benzene in this work were determined to be 5.74g/$\ell$$.$min, 3.85g/$\ell$$.$min, and 1.18g/$\ell$$.$min, respectively. And the catalyst adsorption constant K of TCE, Toluene, and Benzene in this work were determined to be 0.0005㎥/mg, 0.0043㎥/mg and 0.0048㎥/mg, respectively.

Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2269-2273
    • /
    • 2012
  • Pseudo-first-order rate constants $k_{amine}$ have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{amine}$ vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$. This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The $k_{amine}$ values for the reactions of 6 have been dissected into the second-order rate constant $Kk_2$ and the thirdorder rate constant $Kk_3$. The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}=0.94$ and 1.18 for $Kk_2$ and $Kk_3$, respectively. The $Kk_2$ for the reaction of 6 is smaller than the second-order rate constant $k_N$ for the corresponding reaction of 5, although 4-pyridyloxide in 6 is less basic and a better nucleofuge than 2-pyridyloxide in 5.

A Study on the Comparison of Advanced Oxidation Reactions Including UV, $Fe^{2+}$, and $H_2O_2$ for the Degradation of Pentachlorophenol (UV와 $Fe^{2+}$, 그리고 $H_2O_2$를 조합한 고급산화 공정에서의 Pentachlorophenol의 분해 속도 연구)

  • Son, Hyun-Seok;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.846-851
    • /
    • 2007
  • This study was performed to compare and to examine the degradation efficiencies and degradation mechanism of pentachlorophenol(PCP) by UV, $UV/H_2O_2$, $Fe^{2+}$, $Fe^{2+}/H_2O_2$, and $UV/Fe^{2+}/H_2O_2$ processes. The pseudo-first order rate constant was compared in each process. The addition of $H_2O_2$ increased the rate constant by 13 times compared to the reaction with UV alone. The reaction rate in $Fe^{2+}$ reaction with PCP increased 4 times and 7.25 times by adding 180 mM $H_2O_2$ and 16 mM $H_2O_2$, respectively. Compared to that with $Fe^{2+}/H_2O_2$, the rate constant of the reaction with UV alone reaction increased 3.1 times. These results indicates the enhancement of reaction rate is closely related to the generation of OH radical. The degree of the iron sludge production observed in $Fe^{2+}/H_2O_2$ reaction was significantly reduced by irradiating UV in this process.

The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System (Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰)

  • Choi, Ho-Sang;Park, Young-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.885-888
    • /
    • 1999
  • This study was carried out to determine the reaction kinetic constant of the dehydration - thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ and to investigate the durability during the repeated use of a chemical heat-storage material and the reproducibility of reaction system. The order of the dehydration reaction was 1st-order. The reaction rate was directly proportional to a partial pressure difference of water steam. The kinetic constant was 0.27 and the reproducibility of dehydration reaction for a kinetic constant and a reaction order was excellent. The activity variation in the durability test of a chemical heat-storage material was within range of ${\pm}5%$ during the repeatedly use in several times.

  • PDF

High Temperature Corrosion Characteristics of Al-Si-Mg Alloy in O2 and H2S/H2 Environments (Al-Si-Mg 합금의 산소 및 황화수소 환경에서의 고온부식 특성)

  • Lee, Yeong-Hwan;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.14-19
    • /
    • 2017
  • The corrosion characteristics of Al-Si-Mg alloy were investigated in $O_2$ and $H_2S/H_2$ environments at high temperature. The weight gain and the reaction rate constant of the Al-Si-Mg alloy were measured in the oxygen and hydrogen sulfide environments at 773K. The weight gain of Al-Si-Mg alloy was showed parabolic increase in the oxygen and hydrogen sulfide environments. The reaction rate constants were confirmed to be $1.45{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the oxygen environment and $6.19{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the hydrogen sulfide environment respectively. As a result of XPS analysis on the specimen surface, $Al_2O_3$ and MgO compounds were detected in oxygen environment and $Al_2(SO_4)_3$ sulfate was detected in the hydrogen sulfide environment. Corrosion rate of Al-Si-Mg alloy was about 4.3 times faster in hydrogen sulfide environment than oxygen environment.

Stydies on the Substitution of the Activated Aromatic Chloride with Alkoxy Group. (방향족 활성 Chloro화합물의 Alkoxy기 치환에 관한 연구)

  • 조윤상;공영식
    • YAKHAK HOEJI
    • /
    • v.19 no.2
    • /
    • pp.101-110
    • /
    • 1975
  • p-Chloronitrobenzene(substrate) and p-nitrophenetole (product) were quantitatively analyzed to know the degree of extent of reaction in the process of time. The calibration curve was prepared by the internal satndard method in gaschromatography. 2,6-Dimethyl-naphthalene was used as internal standard. The rate constant(k), the reaction velocity in various concentrations of NaOH altered, and the formation of byproducts(azo-compound and p-nitrophenol) with the amounts of MnO$_{2}$ and NaOH altered, were studied. From the results of these of MnO$_{2}$ and NaOH altered, were studied. From the results of these experiments, this reaction was second order and the rate constant was k=10.3 $\times$ 10$^{-3}$ mole$^{-21$. When p-chloronitrobenaene 1 pt. NaOH 0.56pts. MnO$_{2}$ 0.5pts. and ethanol 25 pts-were reacted about 10 hours, p-nitrophenetole was nearly quantitatively obtained without byproducts.

  • PDF

Singlet Oxygen Quenching by Deoxygadusol and Related Mycosporine-Like Amino Acids from Phytoplankton Prorocentrum micans

  • Suh, Hwa-Jin;Lee, Hyun-Woo;Jung. Jin
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.77-81
    • /
    • 2004
  • Deoxygadusol (DO) and structurally related mycosporine-like amino acids, i.e. mycosporine glycine (MO) and mycosporine taurine (MT), were isolated from phytoplankton Prorocentrum micans and studied for the reactivity toward singlet oxygen. These water-soluble compounds with a cyclohexenone chromophore were all shown to be highly effective in quenching singlet oxygen ($^1$ $O_2$), with the efficiencies being significantly larger compared with histidine, a well-known $^1$ $O_2$ quencher. The $^1$ $O_2$ reaction rate constant ( $k_{Q}$) of DG was determined to be 5.4 ${\times}$ 10$^{7}$ $M^{-1}$ $s^{-1}$ by a steady state method based on competitive inhibition of rubrene oxidation. The feasibility of this method was confirmed by estimating the $k_{Q}$ values for MG and two other quenchers, furfuryl alcohol and 1,4-diazabicyclo [2,2,2]octane, and comparing with those values determined by the time-resolved $^1$ $O_2$ decay method in the previous work.ork.

  • PDF

The Kientic Study of Ozone$(O_3)$ with Sulfur Trioxide#(SO_3)$ in the Gas Phase (기체상태에서의 오존$(O_3)$과 삼산화황$(SO_3)$의 반응연구)

  • Kwon Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.644-651
    • /
    • 1992
  • The kinetics of the gas phase reaction of ozone(∼0.5 torr) with sulfur trioxide was investigated in the range of 6∼12 torr pressure at 69∼150${\circ}C$. The reaction rate of ozone with sulfur trioxide was faster than the reaction rate of $O_3 in the presence of CO_2 alone. No evidence for a molecular reaction of O_3 with SO_3 was found and the faster rate is probably due to impurity (HX) from the SO_3 reactant which gives rise to a chain reaction initiated by O_3 + HX → OH + O_2 + X and also SO_3 has a larger collision diameter, which may be attributed to the O3 thermal decomposition more feasibly. The proposed experimental law [-d(O_3)/dt] = k_a(SO_3)(O_3) + k_b(O_3)^{3/2} gives a rate constant ka(M-1 s-1) = (1.55 {\pm} 0.67) {\times} 105 e-{(9.27 0{\pm}0.43)kcal/RT}.$

  • PDF