• Title/Summary/Keyword: $^{1}H$ NMR

Search Result 2,519, Processing Time 0.033 seconds

Quantitative Analysis of Antioxidants in Sesame Seed (참깨 종실의 항산화 성분 정량분석 연구)

  • Ryu, Su-Rho;Lee, Jung-Il;Kang, Sam-Sik;Choi, Chang-Yoel
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 1992
  • This study was conducted to obtain basic informations on the lignan components from sesame seed. Two major lignans, sesamin and sesamolin, were isolated and identified by means of spectral methods, and quantitative analysis was by HPLC from sesame variety Danbaeggae. Separation was achieved by isocratic elution and reversed phase chromatography Develosil ODS column. The content of the major lignan components were about 0.42% and 0.30% for sesamin and sesamolin, respectively.

  • PDF

Tyrosinase Inhibitory Compounds Isolated from Persicaria tinctoria Flower (쪽 꽃에서 분리한 타이로시네이즈 저해 화합물)

  • Woo, Young-Min;Kim, Ah-Jin;Kim, Ji-Young;Lee, Choong-Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.47-50
    • /
    • 2011
  • To develop a new natural whitening agent, we investigated the tyrosinase inhibitory effects of Persicaria tinctoria Flower extracts (PTFE). PTFE showed inhibitory activity on mushroom tyrosinase with the $IC_{50}$ values of $70.8{\pm}2.2{\mu}g/mL$. We purified two active compounds from PTFE by LH-20 column chromatography and prep-high performance liquid chromatography (HPLC) and identified as quercetin-3-O-rhamnoside (Q3R) and myricetin-3-O-rhamnoside (M3R) by $^1H$nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) analysis. Q3R and M3R showed tyrosinase inhibitory activities with the $IC_{50}$ values of $47.0{\pm}0.1{\mu}g/mL$ and $150.5{\pm}1.6{\mu}g/mL$, respectively. These results suggest that PTFE and its active compounds reduced melanin formation by the inhibition of tyrosinase activity. Thus, P. tinctoria flower extracts may be a candidate for cosmetic use.

Isolation and Identification of Growth Inhibition Substance on L. monocytogenes from Dystaenia takesimana Kitagawa (섬바디로부터 L. monocytogenes에 대한 생장억제 물질의 분리 및 구조동정)

  • Oh, Jin-Ah;Shin, Dong-Hwa;Baek, Nam-In
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.984-993
    • /
    • 1999
  • The ethanol extracts and its n-hexane fraction of Dystaenia takesimana Kitagawa exhibited growth inhibition on Listeria monocytogenes ATCC 19111, ATCC 19112, ATCC 19113, ATCC 19114 and ATCC 15313. The minimum inhibitory concentration of the ethanol extract and its n-hexane fraction were 50 ppm and below 30 ppm on Listeria monocytogenes respectively. By silica gel column chromatography, the active fraction A8 was obtained from the ethanol extract of Dystaenia takesimana Kitagawa. After three times of column chromatography, the SBD-1 and SBD-2 were separated from the A8 fraction of the ethanol extract of Dystaenia takesimana Kitagawa. Antimicrobial activity of the SBD-l and SBD-2 was lower than that of the A8. And the A8 exhibited growth inhibition on five strains of Listeria monocytogenes at the level of $10{\sim}30$ ppm and the bactericidal effect was confirmed at same the level. The purified antimicrobial active compound was identified as (9z)-heptadeca-l,9-dien-4,6-diyn-3,8-diol, falcarindiol, by EI/MS, $^{1}H-NMR$ and $^{13}C-NMR$.

  • PDF

Protective Effects of Cellular Membrane and Component Analysis of Polygonum aviculare Extracts (마디풀 추출물의 세포 보호 효과 및 주성분 분석)

  • Park, Soo Nam;Kim, Min-Ji;Kim, Su Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • In this study, the antioxidative effects and component analysis of Polygonum aviculare (P. aviculare) extracts were investigated. The ethyl acetate and the aglycone fraction from P. aviculare extracts were more active than (+)-${\alpha}$-tocopherol and $\small{L}$-ascorbic acid, which are known as strong antioxidants for their antioxidative activity by the DPPH method and chemiluminescence assay. The cellular protective effects of fractions of P. aviculare on the rose-bengal sensitized photohemolysis of human erythrocytes, increased in a concentration dependent manner ($1-10{\mu}l$). In particular, the ethyl acetate fraction at a concentration of $10{\mu}l$ showed the most prominent protective effect among all the extracts (${\tau}_{50}$, 314.70 min). TLC and HPLC chromatogram of the ethyl acetate fraction of P. aviculare extracts revealed 3 main bands (PA8, PA5, PA6) and peaks (peak 1, peak 2, peak 3), which were identified as myricetin-3-O-rhamnoside (myricitrin, PA8, peak 1), quercetin-3-${\alpha}$-rhamnoside (quercitrin, PA6, peak 3) by LC/ESI-MS/MS and $^1H$-NMR respectively. These results indicate that fractions from P. aviculare could be applicable to new functional cosmetics as antioxidants.

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.

New Action Pattern of a Maltose-forming α-Amylase from Streptomyces sp. and its Possible Application in Bakery

  • Ammar, Youssef Ben;Matsubara, Takayoshi;Ito, Kazuo;Iizuka, Masaru;Limpaseni, Tipaporn;Pongsawasdi, Piamsook;Minamiura, Noshi
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2002
  • An $\alpha$-amylase (EC 3.2.1.1) was purified that catalyses the production of a high level of maltose from starch without the attendant production of glucose. The enzyme was produced extracellularly by thermophilic Streptomyces sp. that was isolated from Thailand's soil. Purification was achieved by alcohol precipiation, DEAE-Cellulose, and Gel filtration chromatographies. The purified enzyme exhibited maximum activity at pH 6-7 and $60^{\circ}C$. It had a relative molecular mass of 45 kDa, as determined by SDS-PAGE. The hydrolysis products from starch had $\alpha$-anomeric forms, as determined by $^1H$-NMR. This maltose-forming $\alpha$-amylase completely hydrolyzed the soluble starch to produce a high level of maltose, representing up to 90%. It hydrolyzed maltotetrose and maltotriose to primarily produce maltose (82% and 62%, repectively) without the attendant production of glucose. The high maltose level as a final end-product from starch and maltooligosaccharides, and the unique action pattern of this enzyme, indicate an unusual maltose-forming system. After the addition of the enzyme in the bread-baking process, the bread's volume increased and kept its softness longer than when the bread had no enzyme.

Synthesis, Characterization and In Vitro Evaluation of Triptolide-lysozyme Conjugate for Renal Targeting Delivery of Triptolide

  • Zheng, Qiang;Gong, Tao;Sun, Xun;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1164-1170
    • /
    • 2006
  • A triptolide-lysozyme (TP-LZM) conjugate was synthesized to achieve renal specific delivery and to reduce the side effects of triptolide. Triptolide was coupled to lysozyme through succinic via an ester bond with an average coupling degree of 1 mol triptolide per 1 mol lysozyme. The lysozyme can specifically accumulate in the proximal tubular cells of the kidney, making it a potential carrier for targeting drugs to the kidney. The structure of triptolide succinate (TPS) was confirmed by IR, $^{1}H-NMR$, MS and UV. The concentrations of triptolide in various samples were determined by reversed-phase high-performance liquid chromatography (HPLC). In this study, the physicochemical and stability profiles of TP-LZM under various conditions were investgated the stability and releasing profiles of triptolide-lysozyme (TP-LZM) under various conditions. In vitro release trails showed triptolide-lysozyme was relatively stable in plasma (less than 30% of free triptolide released) and could release triptolide quickly in lysosome (more than 80% of free triptolide released) at $37^{\circ}C$ for 24 h. In addition, the biological activities of the conjugate on normal rat kidney proximal tubular cells (NRK52E) were also tested. The conjugate can effectively reduce NO production in the medium of NRK52E induced by lipopolysaccharide (LPS) but with much lower toxicity. These studies suggest the possibility to promote curative effect and reduce its extra-renal toxicity of triptolide by TP-LZM conjugate.

Biruloquinone, an Acetylcholinesterase Inhibitor Produced by Lichen-Forming Fungus Cladonia macilenta

  • Luo, Heng;Li, Changtian;Kim, Jin Cheol;Liu, Yanpeng;Jung, Jae Sung;Koh, Young Jin;Hur, Jae-Seoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.161-166
    • /
    • 2013
  • At present, acetylcholinesterase (AChE) inhibitors are the first group of drugs to treat mild to moderate Alzheimer's disease (AD). Although beneficial in improving cognitive and behavioral symptoms, the effectiveness of AChE inhibitors has been questioned since they do not delay or prevent neurodegeneration in AD patients. Therefore, in the present study, in order to develop new and effective anti-AD agents from lichen products, both the AChE inhibitory and the neuroprotective effects were evaluated. The AChE inhibitory assay was performed based on Ellman's reaction, and the neuroprotective effect was evaluated by using the MTT method on injured PC12 cells. One AChE inhibitor ($IC_{50}$ = 27.1 ${\mu}g/ml$) was isolated by means of bioactivity-guided isolation from the extract of lichen-forming fungus Cladonia macilenta, which showed the most potent AChE inhibitory activity in previous screening experiment. It was then identified as biruloquinone by MS, and $^1H$- and $^{13}C$-NMR analyses. The inhibitory kinetic assay suggested that biruloquinone is a mixed-II inhibitor on AChE. Meanwhile, biruloquinone improved the viability of the $H_2O_2$- and ${\beta}$-amyloid-injured PC12 cells at 1 to 25 ${\mu}g/ml$. The protective effects are proposed to be related to the potent antioxidant activities of biruloquinone. These results imply that biruloquinone has the potential to be developed as a multifunctional anti- AD agent.

Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae

  • Li, Xing-Yu;Mao, Zi-Chao;Wang, Yue-Hu;Wu, Yi-Xing;He, Yue-Qiu;Long, Chun-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 ${\mu}g/ml$) were used to treat the resting spores of P. brassicae ($10^7/ml$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm ($A_{260}$) and at 280 nm ($A_{280}$) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.

The Isolation and Antioxidative Effects of Vitexin from Acer palmatum

  • Kim Jin Hwa;Lee Bum Chun;Kim Jin Hui;Sim Gwan Sub;Lee Dong Hwan;Lee Kyung Eun;Yun Yeo Pyo;Pyo Hyeong Bae
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.195-202
    • /
    • 2005
  • Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.