• 제목/요약/키워드: $\omega$-dense

검색결과 47건 처리시간 0.02초

RF Magnetron Sputtering 방법으로 제조한 In2O3 박막의 미세구조와 전기적 특성 (Microstructure and Electrical Properties of In2O3 Thin Films Fabricated by RF Magnetron Sputtering)

  • 전용수;윤여춘;김성수
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.290-295
    • /
    • 2002
  • Microstructure and electrical properties of $In_2O_3$ transparent thin films are analyzed on the basis of Structure Zone Model (SZM) proposed by Thornton. Thin films are deposited on glass substrate by RF magnetron sputtering with variation of substrate temperature $(T_s)$ and argon gas pressure $(P_{Ar})$. Microstructure of Zone I of SZM is observed with lowering of substrate temperature or increasing of argon pressure. The higher electrical resistivity of those specimens is due to micro-pores or voids between columnar grains. At the conditions of $T_s=450^{\circ}C$ and $P_{Ar}$=4.2mTorr, the Zone II structure of SZM and the lowest electrical resistivity $(2.1{\times}10^{-2}{\Omega}cm)$ are observed. The dense structure of columnar grains with faceting on growing surface and preferred orientation of (100) plane are observed in those specimens.

SrZr$_{0.95}$M$_{0.05}$O$_3$-$\delta$ 및 BaZr$_{0.95}$O$_3$-$\delta$(M=Ga, Y) 의 제조와 전기적 특성 (Fabrication and Electrical Characteristics of SrZr$_{0.95}$M$_{0.05}$O$_3$-$\delta$ and BaZr$_{0.95}$O$_3$-$\delta$(M=Ga, Y))

  • 편영미;유광수
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.679-684
    • /
    • 1999
  • Specimens of SrZr0.95Ga0.05O3-$\delta$, SrZr0.95Y0.05O3-$\delta$, BaZr0.95Ga0.05O3-$\delta$ and BaZr0.95Y0.05O3-$\delta$ were fabricated by a solid-state reaction method and subsequent sintering at 150$0^{\circ}C$ to 1$600^{\circ}C$ The microstructures and electrical characteristics of the specimens were studied. Only BaZr0.95Ga0.05O3-$\delta$ showed dense microstructure and had typical impedance spectra at various temperature. Its electrical conductivity by impedance analysis was 2.7$\times$10-3$\Omega$-1.cm-1 at 90$0^{\circ}C$ in air. The BaZr0.95Ga0.05O3-$\delta$ exhibited lower grain rsistance in wet atmosphere than in dry atmosphere and the reduction of resistance is due to the proton conduction.

  • PDF

증착조건 및 후-열처리에 따른 $WO_3$박막의 구조와 전기착색 특성 (The Structure and Electrochromic Characteristics of $WO_3$ thin Film with deposition Conditions and Post-Annealing)

  • 조형호;임원택;안일신;이창효
    • 한국진공학회지
    • /
    • 제8권2호
    • /
    • pp.141-147
    • /
    • 1999
  • The electrochromic characteristics of tungsten oxide films are largely affected by deposition conditions, such as substrate temperature and gas flow rate and also post-annealing. We have considered gas flow rate and temperature as important factors having an effect on an electrical, optical phenomenon and structural variation of $WO_3$ . The tungsten oxide films were deposited onto ITO(20$\Omega\box$, 1000$\AA$) using rf magnetron sputtering method. In particular, the films deposited at room temperature were annealed at various temperatures in air. All specimens had crystal structure except one being deposited at room temperature with nearly amorphous-like structure. The specimen deposited at $100^{\circ}C$ had a structure in which the increase in deposition temperature. The specimen deposited at $100^{\circ}C$ had a structure in which the cations$(Li^+)$ are easily movable because of void boundaries induced by regularly arrayed large grains. The specimen deposited at $300^{\circ}C$ had a dense structure with small grains but it exhibited the large mobility and charge density in $WO_3$ because of distinct grain boundaries.

  • PDF

입자 사이즈에 따른 Cu 필름의 에어로졸 성막 거동에 대한 연구 (Study on Aerosol Deposition Behavior of Cu Films According to Particle Size)

  • 이동원;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제30권4호
    • /
    • pp.235-240
    • /
    • 2017
  • The effect of particle sizes on the aerosol deposition (AD) of Cu films is investigated in order to understand the deposition behaviors of metal powder during the AD process. The Cu coatings fabricated by using $2{\mu}m$ Cu powders had a dense microstructure, a high deposition rate ($1.6{\pm}0.2{\mu}m/min$), and low resistance ($9.42{\pm}0.4{\mu}{\Omega}{\cdot}cm$) compared to that from using Cu powder with a particle size greater than $5{\mu}m$. Also, from estimating the internal micro-strain of Cu films, the Cu coatings fabricated by using $2{\mu}m$ Cu particles exhibited a high micro-strain value of $3.307{\times}10^{-3}$. On the other hand, the strain of Cu coatings fabricated with $5{\mu}m$ particles was decreased to $2.76{\times}10^{-3}$. These results seem to show that the impacted Cu particles are compressed and flattened by shock waves, and that their bonding is associated with the high internal micro-strain caused by plastic deformation.

전도성 실버 페이스트의 미세구조 발달에 미치는 glass-frit 크기의 영향 (Influence of Glass-Frit Size on the Microstructural Evolution of Conductive Silver Paste)

  • 한현근;서동석;이종국
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.516-523
    • /
    • 2008
  • The effect of glass-frit size on microstructural evolution and electrical resistance of conductive silver paste was investigated. Silver paste was prepared by mixing 70 wt% commercial silver powder with $1.6{\mu}m$, 3 wt% Bi based glass-frit and 27 wt% organic vehicle. Two different sizes of glass-frit were obtained by ball-milling of commercial glass-frit ($3{\mu}m$) for 3 and 5 days, which had an average particle size of 1.0 and $0.5{\mu}m$. The smaller glass-frit was melt at low sintered temperature and rapidly spread between the silver particles, which is induced the dense networking among silver particles and strong adhesiveness to $Al_2O_3$ substrate. The silver film with smaller glass-frit sintered at $500^{\circ}C$ showed the small pore size and low porosity resulting in low electrical resistivity of $4{\mu}{\Omega}cm$.

유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조 (Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes)

  • 이종범;김지철;박신근;김병주;김재근;이희균;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

적외선 센서용 [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 스피넬 박막의 구조 및 전기적 특성 (Structural and Electrical Properties of [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 Spinel Thin Films for Infrared Sensor Application)

  • 이귀웅;전창준;정영훈;윤지선;조정호;백종후;윤종원
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.825-830
    • /
    • 2014
  • $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ ($0{\leq}x{\leq}1$) thin films prepared by metal organic decomposition process were fabricated on SiN/Si substrate for infrared sensor application. Their structural and electrical properties were investigated with variation of Cu dopant. The $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ (CCNMO) film annealed at $500^{\circ}C$ exhibited a dense microstructure and a homogeneous crystal structure with a cubic spinel phase. Their crystallinity was further enhanced with increasing doped Cu amount. The 120 nm-thick CCNMO (x=0.6) thin film had a low resistivity of $53{\Omega}{\cdot}cm$ at room temperature while the Co-free film (x=1) showed a significantly decreased resistivity of $5.9{\Omega}{\cdot}cm$. Furthermore, the negative temperature coefficient of resistance (NTCR) characteristics were lower than $-2%/^{\circ}C$ for all the specimens with $x{\geq}0.6$. These results imply that the CCNMO ($x{\geq}0.6$) thin films are a good candidate material for infrared sensor application.

NTC 서미스터로 응용을 위한 Ni-Mn-Co 산화물의 미세구조와 전기적 특성 (The Microstructural and Electrical Properties of Ni-Mn-Co Oxide for the Application of NTC Thermistors)

  • 김경민;이성갑;권민수;김영곤
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.361-365
    • /
    • 2017
  • In this paper, we investigated the effect of Co content on the microstructural and electrical properties of $Ni_{0.79}Mn_{2.21-x}Co_xO_4$ (x=0 to 0.25) specimens. Solid-state reaction was used to prepare the bulk specimens. XRD (X-ray diffraction) patterns showed that all compositions had a cubic spinel phase. As a result of the microstructural properties, FE-SEM(field-emission scanning electron microscopy) analysis showed a dense structure, and the mean grain size increased from $5.24{\mu}m$ to $7.33{\mu}m$ with an increase of Co content from x=0 to 0.25. All specimens exhibited the typical NTC thermistor characteristics as the electrical resistance exponentially decreased with increasing temperature. The resistivity and the B-value of $Ni_{0.79}Mn_{1.96}Co_{0.25}O_4$ were $2959{\Omega}{\cdot}cm$ and 3719, respectively.

고온가압소결한 SiC-ZrB$_2$ 복합체의 기계적, 전기적 특성 (Mechanical and Electrical Properties of Hot-Pressed Silicon Carbide-Zirconium Diboride Composites)

  • 신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 1997
  • The influences of ZrB$_2$ additions to SiC on microstructural, DDM(Electrical Discharge Machining), mechanical and electrical properties were investigated. composites were prepared by adding 15, 30, 45 vol.% ZrB$_2$particles as a second phase to SiC matrix. SiC-ZrB$_2$ composites obtained by hot pressing for high temperature structural application were fully dense with the relative densities over 99%. The fracture toughness of the composites were increased with the ZrB$_2$contents. In case of composite containing 30vol.% ZrB$_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to that of monolithic SiC sample. The electrical resistivities of SiC-ZrB$_2$ composites decreased significantly with the ZrB$_2$ contents. The electrical resistivity of SiC-30vol.% ZrB$_2$ composite showed 6.50$\times$10$^{-4}$ $\Omega$.cm. Cutting velocity of EDM of SiC-ZrB$_2$ composites are directly proportional to duty factor of pulse width. Surface roughness, however, are not all proportional to pulse width. Higher-flexural strength composites show a trend toward smaller crater volumes, leaving a smoother surface; the average surface roughness of the SiC-ZrB$_2$ 15 vol.% composite with the flexural strengthe of 375㎫ was 3.2${\mu}{\textrm}{m}$, whereas the SiC-ZrB$_2$ 30.vol% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$ composites, the SiC-ZrB$_2$ two phases are distinct; the white phase is the ZrB$_2$and the gray phase is the SiC matrix. In the SEM micrographs of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present. It is shown that SiC-ZrB$_2$ composites are able to be machined without surface cracking.

  • PDF

Strontium Gallate의 첨가에 따른 Ce0.8Gd0.2O2-δ 세라믹스의 소결거동과 전기전도도 특성 (Effects of Strontium Gallate Additions on Sintering Behavior and Electrical Conductivity of Ce0.8Gd0.2O2-δ Ceramics)

  • 박진희;최광훈;류봉기;이주신
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.145-152
    • /
    • 2006
  • The densification behavior and electrical conductivity of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the strontium gallate concentration ranging from 0 to $5\;mol\%$. Both the sintered density and grain size were found to increase rapidly up to $0.5\;mol\%$ $Sr_2Ga_2O_5$, and then to decrease with further addition. Dense $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics with $97\%$ of the theoretical density could be obtained for $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen sintered at $1250^{\circ}C$ for 5 h, whereas pure $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics needed to be sintered at $1550^{\circ}C$ in order to obtain an equivalent theoretical density, Electrical conductivity was measured as a function of dopant content, over the temperature range of $350\;-\;600^{\circ}C$ in air. Total conductivity of $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen showed the maximum conductivity of $2.37{\times}10^{-2}{{\Omega}-1}{\cdot}cm^{-1}$ at $500^{\circ}C$, The addition of strontium gallate was found to promote the sintering properties and electrical conductivities of $Gd_2O_3$-doped $CeO_2$.