• 제목/요약/키워드: $\mathbb{Z}_2$-map

검색결과 10건 처리시간 0.028초

AN INJECTIVITY THEOREM FOR CASSON-GORDON TYPE REPRESENTATIONS RELATING TO THE CONCORDANCE OF KNOTS AND LINKS

  • Friedl, Stefan;Powell, Mark
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.395-409
    • /
    • 2012
  • In the study of homology cobordisms, knot concordance and link concordance, the following technical problem arises frequently: let ${\pi}$ be a group and let M ${\rightarrow}$ N be a homomorphism between projective $\mathbb{Z}[{\pi}]$-modules such that $\mathbb{Z}_p\;{\otimes}_{\mathbb{Z}[{\pi}]}M{\rightarrow}\mathbb{Z}_p{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ is injective; for which other right $\mathbb{Z}[{\pi}]$-modules V is the induced map $V{\otimes}_{\mathbb{Z}[{\pi}]}\;M{\rightarrow}\;V{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ also injective? Our main theorem gives a new criterion which combines and generalizes many previous results.

COMPOSITION OPERATORS FROM HARDY SPACES INTO α-BLOCH SPACES ON THE POLYDISK

  • SONGXIAO LI
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.703-708
    • /
    • 2005
  • Let ${\varphi}(z)\;=\;({\varphi}_1(Z),{\cdots},{\varphi}_n(Z))$ be a holomorphic self­map of $\mathbb{D}^n$, where $\mathbb{D}^n$ is the unit polydisk of $\mathbb{C}^n$. The sufficient and necessary conditions for a composition operator to be bounded and compact from the Hardy space $H^2(\mathbb{D}^n)$ into $\alpha$-Bloch space $\beta^{\alpha}(\mathbb{D}^n)$ on the polydisk are given.

A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES

  • Tanaka, Ryuichi
    • 대한수학회지
    • /
    • 제49권2호
    • /
    • pp.251-263
    • /
    • 2012
  • A CW complex B is said to be I-trivial if there does not exist a $\mathbb{Z}_2$-map from $S^{i-1}$ to S(${\alpha}$) for any vector bundle ${\alpha}$ over B a any integer i with i > dim ${\alpha}$. In this paper, we consider the question of determining whether $\Sigma^k\mathbb{R}P^n$ is I-trivial or not, and to this question we give complete answers when k $\neq$ 1, 3, 8 and partial answers when k = 1, 3, 8. A CW complex B is I-trivial if it is "W-trivial", that is, if for every vector bundle over B, all the Stiefel-Whitney classes vanish. We find, as a result, that $\Sigma^k\mathbb{R}P^n$ is a counterexample to the converse of th statement when k = 2, 4 or 8 and n $\geq$ 2k.

VARIOUS CONTINUITIES OF A MAP f ; (X, k, TnX) → (Y, 2, TY) IN COMPUTER TOPOLOGY

  • HAN, SANG-EON
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.591-603
    • /
    • 2006
  • For a set $X{\subset}{\mathbb{Z}}^n$ let $(X,\;T^n_X)$ be the subspace of the Khalimsky n-dimensional space $({\mathbb{Z}}^n,\;T^n)$, $n{\in}N$. Considering a k-adjacency of $(X,\;T^n_X)$, we use the notation $(X,\;k,\;T^n_X)$. In this paper for a map $$f:(X,\;k,\;T^n_X){\rightarrow}(Y,\;2\;T_Y)$$, we find the condition that weak (k, 2)-continuity of the map f implies strong (k, 2)-continuity of f.

  • PDF

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • 호남수학학술지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR A STARLIKE CLASS INVOLVING A DIFFERENTIAL INEQUALITY

  • Swaminathan, Anbhu;Wani, Lateef Ahmad
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1409-1426
    • /
    • 2020
  • Let 𝒜n be the class of analytic functions f(z) of the form f(z) = z + ∑k=n+1 αkzk, n ∈ ℕ defined on the open unit disk 𝔻, and let $${\Omega}_n:=\{f{\in}{\mathcal{A}}_n:\|zf^{\prime}(z)-f(z)\|<{\frac{1}{2}},\;z{\in}{\mathbb{D}}\}$$. In this paper, we make use of differential subordination technique to obtain sufficient conditions for the class Ωn. Writing Ω := Ω1, we obtain inclusion properties of Ω with respect to functions which map 𝔻 onto certain parabolic regions and as a consequence, establish a relation connecting the parabolic starlike class 𝒮P and the uniformly starlike UST. Various radius problems for the class Ω are considered and the sharpness of the radii estimates is obtained analytically besides graphical illustrations.

A CERTAIN PROPERTY OF POLYNOMIALS AND THE CI-STABILITY OF TANGENT BUNDLE OVER PROJECTIVE SPACES

  • Tanaka, Ryuichi
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.83-86
    • /
    • 2007
  • We determine the largest integer i such that $0 and the coefficient of $t^{i}$ is odd in the polynomial $(1+t+t^{2}+{\cdots}+t^{n})^{n+1}$. We apply this to prove that the co-index of the tangent bundle over $FP^{n}$ is stable if $2^{r}{\leq}n<2^{r}+\frac{1}{3}(2^{r}-2)$ for some integer r.

GENERALIZED COMPOSITION OPERATORS FROM GENERALIZED WEIGHTED BERGMAN SPACES TO BLOCH TYPE SPACES

  • Zhu, Xiangling
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1219-1232
    • /
    • 2009
  • Let H(B) denote the space of all holomorphic functions on the unit ball B of $\mathbb{C}^n$. Let $\varphi$ = (${\varphi}_1,{\ldots}{\varphi}_n$) be a holomorphic self-map of B and $g{\in}2$(B) with g(0) = 0. In this paper we study the boundedness and compactness of the generalized composition operator $C_{\varphi}^gf(z)=\int_{0}^{1}{\mathfrak{R}}f(\varphi(tz))g(tz){\frac{dt}{t}}$ from generalized weighted Bergman spaces into Bloch type spaces.

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

  • Ardebili, Fariba Alighadr;Vaezi, Hamid;Hassanlou, Mostafa
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.519-534
    • /
    • 2020
  • Let H(𝔻) be the space of all holomorphic functions on the open unit disc 𝔻 in the complex plane ℂ. In this paper, we investigate the boundedness and compactness of the generalized integration operator $$I^{(n)}_{g,{\varphi}}(f)(z)=\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^z\;f^{(n)}({\varphi}({\xi}))g({\xi})\;d{\xi},\;z{\in}{\mathbb{D}},$$ between Bloch-type and weighted Dirichlet-type spaces, where 𝜑 is a holomorphic self-map of 𝔻, n ∈ ℕ and g ∈ H(𝔻).