DOI QR코드

DOI QR Code

AN INJECTIVITY THEOREM FOR CASSON-GORDON TYPE REPRESENTATIONS RELATING TO THE CONCORDANCE OF KNOTS AND LINKS

  • Received : 2010.11.22
  • Published : 2012.03.31

Abstract

In the study of homology cobordisms, knot concordance and link concordance, the following technical problem arises frequently: let ${\pi}$ be a group and let M ${\rightarrow}$ N be a homomorphism between projective $\mathbb{Z}[{\pi}]$-modules such that $\mathbb{Z}_p\;{\otimes}_{\mathbb{Z}[{\pi}]}M{\rightarrow}\mathbb{Z}_p{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ is injective; for which other right $\mathbb{Z}[{\pi}]$-modules V is the induced map $V{\otimes}_{\mathbb{Z}[{\pi}]}\;M{\rightarrow}\;V{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ also injective? Our main theorem gives a new criterion which combines and generalizes many previous results.

Keywords

References

  1. M. Aschbacher, Finite Group Theory, Cambridge University Press, 1993.
  2. A. Casson and C. M. Gordon, Cobordism of classical knots, A la Recherche de la Topolo- gie Perdue, Progr. Math. 62, 181-199, Birkhauser Boston, 1986.
  3. J. C. Cha, Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers, J. Eur. Math. Soc. 12 (2010), no. 3, 555-610.
  4. J. C. Cha and S. Friedl, Twisted torsion invariants and link concordance, To appear in Forum Mathematicum, Preprint: http://arxiv.org/abs/1001.0926, 2010.
  5. J. C. Cha and K. H. Ko, Signature invariants of links from irregular covers and non- abelian covers, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 67-81. https://doi.org/10.1017/S0305004199003606
  6. J. C. Cha and K. H. Ko, Signature invariants of covering links, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3399-3412. https://doi.org/10.1090/S0002-9947-05-03739-6
  7. J. C. Cha and K. E. Orr, L(2)-signatures, homology localization and amenable groups, To appear in Communications on Pure and Applied Math., Preprint: arXiv:09103.3700, 2009.
  8. T. D. Cochran, K. E. Orr, and P. Teichner, Knot concordance, Whitney towers and L(2) signatures, Ann. of Math. (2) 157 (2003), no. 2, 433-519.
  9. S. Friedl, Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants, Algebr. Geom. Topol. 4 (2004), 893-934. https://doi.org/10.2140/agt.2004.4.893
  10. S. Friedl, Link concordance, boundary link concordance and eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 3, 437-460. https://doi.org/10.1017/S0305004105008455
  11. S. Friedl and M. Powell, Links not concordant to the Hopf link, Preprint, 2011.
  12. S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), editors: Markus Banagl and Denis Vogel (2010), 45-94.
  13. P. Hall, On the Finiteness of certain solvable groups, Proc. London Math. Soc. 3 (1959), no. 9, 595-622.
  14. C. Herald, P. Kirk, and C. Livingston, Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation, Mathematische Zeitschrift 265 (2010), no. 4, 925-949. https://doi.org/10.1007/s00209-009-0548-1
  15. S. Lang, Algebra, Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
  16. C. F. Letsche, An obstruction to slicing knots using the eta invariant, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 301-319. https://doi.org/10.1017/S0305004199004016
  17. J. Levine, Link invariants via the eta invariant, Comment. Math. Helv. 69 (1994), no. 1, 82-119. https://doi.org/10.1007/BF02564475
  18. L. Smolinsky, Invariants of link cobordism, Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987). Topology Appl. 32 (1989), no. 2, 161-168.
  19. J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181. https://doi.org/10.1016/0021-8693(65)90017-7
  20. R. Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974), 302-332.

Cited by

  1. Whitney towers, gropes and Casson–Gordon style invariants of links vol.15, pp.3, 2015, https://doi.org/10.2140/agt.2015.15.1813
  2. Links not concordant to the Hopf link vol.156, pp.03, 2014, https://doi.org/10.1017/S0305004114000036
  3. Symmetric chain complexes, twisted Blanchfield pairings and knot concordance vol.18, pp.6, 2018, https://doi.org/10.2140/agt.2018.18.3425