• 제목/요약/키워드: $\beta$-catenin

검색결과 265건 처리시간 0.023초

Effect of Dietary Selenium on the Colon Carcinogenesis in Male ICR Mice

  • Cho, Min-Haeng;Kim, Jun-Hyeong;Hue, Jin-Joo;Kang, Bong-Su;Park, Hyun-Ji;Nam, Sang-Yoon;Yun, Young-Won;Kim, Jong-Soo;Jeong, Jae-Hwang;Lee, Beom-Jun
    • 한국식품위생안전성학회지
    • /
    • 제25권3호
    • /
    • pp.269-277
    • /
    • 2010
  • 본 연구에서는 azoxymethane (AOM)과 dextran sodium sulfate (DSS)로 유도된 대장 발암과정에 대한 셀레늄의 방어 효과를 조사하였다. 셀레늄 결핍(0.02 ppm Se), 정상(0.1 ppm Se), 과다(0.5 ppm Se)사료를 12주간 식이로 급여하여 혈액검사와 대장암 발생의 초기단계인 aberrant crypt foci (ACF)수를 측정했으며, 암 발생율을 조사하였다. ICP-AES를 사용하여 간의 셀레늄 농도를 측정하였으며, 또한 셀레늄포함 항산화효소인 glutathione peroxidase (GPx) 활성을 알아보았다. 또한 TUNEL assay와 PCNA, $\beta$-catenin에 대한 면역조직 염색을 수행하였다. ACF 수 및 종양 발생률에 있어서, 셀레늄과다사료를 급여한 군이 정상셀레늄사료를 급여한 군보다 낮았으며, 셀레늄결핍사료를 급여한 군은 오히려 ACF 수 및 종양 발생률이 높았다. GPx 활성은 셀레늄의 섭취가 과다한 군에서 높게 나타났으며, 이 때, TUNEL에서 apoptotic positive cell이 증가하는 것을 확인했다. 또한 셀레늄의 섭취가 과다한 군에서 PCNA와 $\beta$-catenin의 발현이 감소됨을 볼 수 있었다. 본 마우스 모델실험에서 셀레늄은 여러 기전에 의해 대장암 발생을 억제할 수 있을 것으로 사료된다.

암줄기세포의 특성 및 면역관문억제 (Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition)

  • 최상훈;김형기
    • 생명과학회지
    • /
    • 제29권4호
    • /
    • pp.499-508
    • /
    • 2019
  • 암줄기세포는 전이와 재발의 주요한 요인이 되는 자가재생능력, 분화할 수 있는 능력, 치료에 대한 저항성 및 암 형성 능력의 특성을 가진다. WNT/${\beta}$-catenin, Hedgehog, Notch, BMI1, BMP 및 TGF-${\beta}$와 같은 암줄기세포의 특성을 획득 및 유지할 수 있는 신호기전의 연구 결과가 존재하지만, 현재까지 선택적으로 암줄기세포를 표적할 수 있는 치료 전략은 미미하다. 최근, 면역관문억제제인 CTLA-4, PD-1/PD-L1 단일클론항체는 흑색종, 폐암, 췌장암 및 혈액암에 괄목할만한 임상 시험 결과를 나타냈으며, 긴 항암지속효과와 적은 부작용은 기존 항암제보다 개선 된 모습을 보였다. 또한 두경부편평상피암, 흑색종, 유방암 줄기세포를 선택적으로 제거 하였다. 위의 결과를 종합하면, 면역관문억제제는 이전 항암제에 비해 효과적인 항암전략이며, 동시에 암줄기세포를 선택적으로 제거할 수 있는 가능성을 시사한다. 따라서 본 리뷰에서는 암줄기세포와 면역관문억제제의 이해를 통해, 면역관문억제제의 암줄기세포 표적 가능성에 대해 고찰하고자 한다.

Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

  • Dashwood, Roderick H.
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.35-42
    • /
    • 2003
  • Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and $gpt{\Delta}$ transgenics, $XPA^{-/-}$, $XPC^{-/-}$, $Msh2^{+/-}$, $Msh2^{-/-}$ and $p53^{+/-}$ knock-outs, Apc mutant mice ($Apc^{{\Delta}716}$, $Apc^{1638N}$, $Apc^{min}$), and $A33^{{\Delta}N{\beta}-cat}$ knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac.

Role of Wnt signaling in fracture healing

  • Xu, Huiyun;Duan, Jing;Ning, Dandan;Li, Jingbao;Liu, Ruofei;Yang, Ruixin;Jiang, Jean X.;Shang, Peng
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.666-672
    • /
    • 2014
  • The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair.

Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway

  • Ko, Gyeong-A;Shrestha, Sabina;Cho, Somi Kim
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.3-12
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta ($GSK3{\beta}$) signaling pathway, which promotes the reduction of ${\beta}-catenin$. Treatment with the $GSK3{\beta}$ inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic.

Anti-angiogenic, Anti-cell Adhesion Switch from Halophilic Enterobacteria

  • Lim, Jong Kwon;Seo, Hyo Jin;Kim, Eun Ok;Meydani, Mohsen;Kim, Jong Deog
    • 한국해양바이오학회지
    • /
    • 제1권3호
    • /
    • pp.156-162
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/mL$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited non-activated U937 monocytic cell adhesion to HUVECs activated with IL-$1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with IL-$1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to IL-$1{\beta}$ stimulated HUVECs was completely suppressed by 121% at a concentration of 18.5 ug/mL. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin and VE-cadherin to NF-kB based on western bolt analysis. And also inhibited IL-1-stimulated HUVEC expression of the adhesion molecules, ICAM-1 by 40%, VCAM-1 by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities and non-toxicity may be expected from these results.

  • PDF

Identification of Anti-Angiogenic and Anti-Cell Adhesion Materials from Halophilic Enterobacteria of the Trachurus japonicus

  • Lim, Jong-Kwon;Seo, Hyo-Jin;Kim, Eun-Ok;Meydani, Mohsen;Kim, Jong-Deog
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1544-1553
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/ml$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited cell adhesion that non-activated U937 monocytic cell adhesion to HUVECs activated with $IL-1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with $IL-1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to $IL-1{\beta}$-stimulated HUVECs was completely suppressed by 121% at a concentration of $18.5{\mu}g/ml$. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin, and VE-cadherin to NF-kB, based on western bolt analysis. It also inhibited IL-l-stimulated HUVEC expression of the adhesion molecules, ICAM-l by 40%, VCAM-l by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities, and non-toxicity may be expected from these results.

Osteoclast-derived SLIT3 is a coupling factor linking bone resorption to bone formation

  • Koh, Jung-Min
    • BMB Reports
    • /
    • 제51권6호
    • /
    • pp.263-264
    • /
    • 2018
  • We identified osteoclast-derived SLIT3 as a new coupling factor using fractionated secretomics. Coupling links bone resorption to bone formation. SLIT3 stimulated the recruitment and proliferation of osteoblasts into bone remodeling sites via activation of ${\beta}-catenin$. Autocrine signaling by SLIT3 also inhibited bone resorption by suppressing the fusion and differentiation of pre-osteoclasts. All mice lacking Slit3 or its receptor Robo1 showed an osteopenic phenotype with low bone formation and high bone resorption. A small truncated recombinant SLIT3 protein increased bone mass in an osteopenic mouse model. These results suggest that SLIT3 is a novel therapeutic target in metabolic bone diseases.

Effect of Genistein on the Wnt Signaling Pathway and Cell Growth

  • Moon, Hyun-Ju;Ryu, Sung-Yeoul;Kang, Tae-Seok;Kang, Ho-ll;Kang, ll-Hyun;Kim, Tae-Sung;Hong, Jin;Han, Soon-Young;Choi, Kang-Yell;Kwon, Ki-Sung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2005년도 춘계 국제심포지엄 및 학술대회
    • /
    • pp.189-189
    • /
    • 2005
  • PDF

WNT Signaling in Lung Repair and Regeneration

  • Raslan, Ahmed A.;Yoon, Jeong Kyo
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.774-783
    • /
    • 2020
  • The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.