DOI QR코드

DOI QR Code

Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition

암줄기세포의 특성 및 면역관문억제

  • Choi, Sang-Hun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Hyunggee (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 최상훈 (고려대학교 생명과학대학 생명공학과) ;
  • 김형기 (고려대학교 생명과학대학 생명공학과)
  • Received : 2019.03.14
  • Accepted : 2019.04.08
  • Published : 2019.04.30

Abstract

Cancer stem cells (CSCs), which are primarily responsible for metastasis and recurrence, have self-renewal, differentiation, therapeutic resistance, and tumor formation abilities. Numerous studies have demonstrated the signaling pathways essential for the acquisition and maintenance of CSC characteristics, such as WNT/${\beta}$-catenin, Hedgehog, Notch, B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Bone morphogenetic protein (BMP), and TGF-${\beta}$ signals. However, few therapeutic strategies have been developed that can selectively eliminate CSCs. Recently, neutralizing antibodies against Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), immune checkpoint inhibitors (ICIs), have shown promising outcomes in clinical trials of melanoma, lung cancer, and pancreatic cancer, as well as in hematologic malignancies. ICIs are considered to outperform conventional anticancer drugs by maintaining long-lasting anti-cancer effects, with less severe side effects. Several studies reported that ICIs successfully blocked CSC properties in head and neck squamous carcinomas, melanomas, and breast cancer. Together, these findings suggest that novel and effective anticancer therapeutic modalities using ICIs for selective elimination of CSCs may be developed in the near future. In this review, we highlight the origin and characteristics of CSCs, together with critical signaling pathways. We also describe progress in ICI-mediated anticancer treatment to date and present perspectives on the development of CSC-targeting ICIs.

암줄기세포는 전이와 재발의 주요한 요인이 되는 자가재생능력, 분화할 수 있는 능력, 치료에 대한 저항성 및 암 형성 능력의 특성을 가진다. WNT/${\beta}$-catenin, Hedgehog, Notch, BMI1, BMP 및 TGF-${\beta}$와 같은 암줄기세포의 특성을 획득 및 유지할 수 있는 신호기전의 연구 결과가 존재하지만, 현재까지 선택적으로 암줄기세포를 표적할 수 있는 치료 전략은 미미하다. 최근, 면역관문억제제인 CTLA-4, PD-1/PD-L1 단일클론항체는 흑색종, 폐암, 췌장암 및 혈액암에 괄목할만한 임상 시험 결과를 나타냈으며, 긴 항암지속효과와 적은 부작용은 기존 항암제보다 개선 된 모습을 보였다. 또한 두경부편평상피암, 흑색종, 유방암 줄기세포를 선택적으로 제거 하였다. 위의 결과를 종합하면, 면역관문억제제는 이전 항암제에 비해 효과적인 항암전략이며, 동시에 암줄기세포를 선택적으로 제거할 수 있는 가능성을 시사한다. 따라서 본 리뷰에서는 암줄기세포와 면역관문억제제의 이해를 통해, 면역관문억제제의 암줄기세포 표적 가능성에 대해 고찰하고자 한다.

Keywords

SMGHBM_2019_v29n4_499_f0001.png 이미지

Fig. 1. The characteristics of cancer stem cells.

SMGHBM_2019_v29n4_499_f0002.png 이미지

Fig. 2. Mechanism of immune checkpoints and inhibitors. A: CTLA-4 receptor expressed by T lymphocyte competes with CD28 to bind to CD80/CD86. CTLA-4, which has higher affinity than CD28, consequently inhibits CD28 so that function of T lymphocyte is blocked. B: T lymphocytes are activated by two consecutive signaling pathways. When antigen presenting cells present antigen via MHC class II, T lymphocytes bind through TCR, and subsequently CD28 receptor binds to CD80/CD86. As a result, T lymphocytes are activated to attack cancer cells. C: Cancer cells suppress T lymphocytes using PD-L1. Activated PD-1 signal reduces activity of T lymphocytes by inhibiting RAS and PI3K signaling pathways. D: Immune checkpoint inhibitors restore the activity of T lymphocytes through CTLA-4, PD-1 and PD-L1. As a result, T lymphocytes regain the function to eliminate cancer cells. (CTLA-4 inhibitor = Ipilimumab, PD-1 inhibitor = Nivolumab, PD-L1 inhibitor = Atezolizumab, Durvalumab and Avelumab).

SMGHBM_2019_v29n4_499_f0003.png 이미지

Fig. 3. Multiple signaling molecules in immune checkpoint.

Table 1. List of immune checkpoint inhibitors currently being approved in clinical trial

SMGHBM_2019_v29n4_499_t0001.png 이미지

References

  1. Agarwal, P., Zhang, B., Ho, Y., Cook, A., Li, L., Mikhail, F. M., Wang, Y., McLaughlin, M. E. and Bhatia, R. 2017. Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI. Blood 129, 1008-1020. https://doi.org/10.1182/blood-2016-05-714089
  2. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 100, 3983-3988. https://doi.org/10.1073/pnas.0530291100
  3. Bar, E. E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A. L., DiMeco, F., Olivi, A. and Eberhart, C. G. 2007. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524-2533. https://doi.org/10.1634/stemcells.2007-0166
  4. Baselga, J. 2001. The EGFR as a target for anticancer therapy--focus on cetuximab. Eur. J. Cancer 37, Suppl 4: S16-22.
  5. Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H. and Shimada, M. 2014. Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res. 34, 6339-6344.
  6. Baumeister, S. H., Freeman, G. J., Dranoff, G. and Sharpe, A. H. 2016. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539-573. https://doi.org/10.1146/annurev-immunol-032414-112049
  7. Begicevic, R. R. and Falasca, M. 2017. ABC transporters in cancer stem cells: beyond chemoresistance. Int. J. Mol. Sci. 18, pii:E2362.
  8. Bhavanasi, D. and Klein, P. S. 2016. Wnt Signaling in Normal and Malignant Stem Cells. Curr. Stem Cell Rep. 2, 379-387. https://doi.org/10.1007/s40778-016-0068-y
  9. Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J. and Terzis, A. J. 2005. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5, 899-904. https://doi.org/10.1038/nrc1740
  10. Blank, C., Brown, I., Peterson, A. C., Spiotto, M., Iwai, Y., Honjo, T. and Gajewski, T. F. 2004. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64, 1140-1145. https://doi.org/10.1158/0008-5472.CAN-03-3259
  11. Brescia, P., Ortensi, B., Fornasari, L., Levi, D., Broggi, G. and Pelicci, G. 2013. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31, 857-869. https://doi.org/10.1002/stem.1317
  12. Brown, Y., Hua, S. and Tanwar, P. S. 2019. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int. J. Biochem. Cell Biol. 109, 90-104. https://doi.org/10.1016/j.biocel.2019.02.002
  13. Cai, W. Y., Wei, T. Z., Luo, Q. C., Wu, Q. W., Liu, Q. F., Yang, M., Ye, G. D., Wu, J. F., Chen, Y. Y., Sun, G. B., Liu, Y. J., Zhao, W. X., Zhang, Z. M. and Li, B. A. 2013. The Wnt-beta-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J. Cell Sci. 126, 2877-2889. https://doi.org/10.1242/jcs.123810
  14. Chaplin, D. D. 2010. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3-23. https://doi.org/10.1016/j.jaci.2009.12.980
  15. Chen, Y., Tan, W. and Wang, C. 2018. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco. Targets Ther. 11, 3817-3826. https://doi.org/10.2147/OTT.S168317
  16. Chun, S. Y., Kwon, Y. S., Nam, K. S. and Kim, S. 2015. Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7 tumorspheres by inhibiting the drug efflux function of ABC transporters. Biomed. Pharmacother. 72, 37-43. https://doi.org/10.1016/j.biopha.2015.03.009
  17. Chuthapisith, S., Eremin, J., El-Sheemey, M. and Eremin, O. 2010. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg. Oncol. 19, 27-32. https://doi.org/10.1016/j.suronc.2009.01.004
  18. Clark, C. A., Gupta, H. B., Sareddy, G., Pandeswara, S., Lao, S., Yuan, B., Drerup, J. M., Padron, A., Conejo-Garcia, J., Murthy, K., Liu, Y., Turk, M. J., Thedieck, K., Hurez, V., Li, R., Vadlamudi, R. and Curiel, T. J. 2016. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 76, 6964-6974. https://doi.org/10.1158/0008-5472.CAN-16-0258
  19. Ding, P. R., Tiwari, A. K., Ohnuma, S., Lee, J. W., An, X., Dai, C. L., Lu, Q. S., Singh, S., Yang, D. H., Talele, T. T., Ambudkar, S. V. and Chen, Z. S. 2011. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One 6, e19329. https://doi.org/10.1371/journal.pone.0019329
  20. Ehtesham, M., Sarangi, A., Valadez, J. G., Chanthaphaychith, S., Becher, M. W., Abel, T. W., Thompson, R. C. and Cooper, M. K. 2007. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26, 5752-5761. https://doi.org/10.1038/sj.onc.1210359
  21. Escors, D., Gato-Canas, M., Zuazo, M., Arasanz, H., Garcia-Granda, M. J., Vera, R. and Kochan, G. 2018. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct. Target. Ther. 3, 26. https://doi.org/10.1038/s41392-018-0022-9
  22. Eun, K., Ham, S. W. and Kim, H. 2017. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 50, 117-125. https://doi.org/10.5483/BMBRep.2017.50.3.222
  23. Eyre, R., Harvey, I., Stemke-Hale, K., Lennard, T. W., Tyson-Capper, A. and Meeson, A. P. 2014. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumour Biol. 35, 9879-9892. https://doi.org/10.1007/s13277-014-2277-2
  24. Frank, N. Y., Schatton, T., Kim, S., Zhan, Q., Wilson, B. J., Ma, J., Saab, K. R., Osherov, V., Widlund, H. R., Gasser, M., Waaga-Gasser, A. M., Kupper, T. S., Murphy, G. F. and Frank, M. H. 2011. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 71, 1474-1485. https://doi.org/10.1158/0008-5472.CAN-10-1660
  25. Friedmann-Morvinski, D. and Verma, I. M. 2014. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 15, 244-253. https://doi.org/10.1002/embr.201338254
  26. Gurney, A., Axelrod, F., Bond, C. J., Cain, J., Chartier, C., Donigan, L., Fischer, M., Chaudhari, A., Ji, M., Kapoun, A. M., Lam, A., Lazetic, S., Ma, S., Mitra, S., Park, I. K., Pickell, K., Sato, A., Satyal, S., Stroud, M., Tran, H., Yen, W. C., Lewicki, J. and Hoey, T. 2012. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA. 109, 11717-11722. https://doi.org/10.1073/pnas.1120068109
  27. Hasanabady, M. H. and Kalalinia, F. 2016. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. J. Biosci. 41, 313-324. https://doi.org/10.1007/s12038-016-9601-5
  28. Ho, M. M., Ng, A. V., Lam, S. and Hung, J. Y. 2007. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827-4833. https://doi.org/10.1158/0008-5472.CAN-06-3557
  29. Hsu, J. M., Xia, W., Hsu, Y. H., Chan, L. C., Yu, W. H., Cha, J. H., Chen, C. T., Liao, H. W., Kuo, C. W., Khoo, K. H., Hsu, J. L., Li, C. W., Lim, S. O., Chang, S. S., Chen, Y. C., Ren, G. X. and Hung, M. C. 2018. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat. Commun. 9, 1908. https://doi.org/10.1038/s41467-018-04313-6
  30. Hudis, C. A. 2007. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39-51. https://doi.org/10.1056/NEJMra043186
  31. Iwama, S., De, Remigis, A., Callahan, M. K., Slovin, S. F., Wolchok, J. D. and Caturegli, P. 2014. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230-245.
  32. Jeon, H. Y., Ham, S. W., Kim, J. K., Jin, X., Lee, S. Y., Shin, Y. J., Choi, C. Y., Sa, J. K., Kim, S. H., Chun, T., Jin, X., Nam, D. H. and Kim, H. 2019. Ly6G(+) inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ. doi: 10.1038/s41418-019-0282-0.
  33. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. and Dick, J. E. 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12, 1167-1174. https://doi.org/10.1038/nm1483
  34. Jin, X., Jeon, H. M., Jin, X., Kim, E. J., Yin, J., Jeon, H. Y., Sohn, Y. W., Oh, S. Y., Kim, J. K., Kim, S. H., Jung, J. E., Kwak, S., Tang, K. F., Xu, Y., Rich, J. N. and Kim, H. 2016. The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep. 16, 1629-1641. https://doi.org/10.1016/j.celrep.2016.06.092
  35. Kim, D. K., Seo, E. J., Choi, E. J., Lee, S. I., Kwon, Y. W., Jang, I. H., Kim, S. C., Kim, K. H., Suh, D. S., Seong-Jang, K., Lee, S. C. and Kim, J. H. 2016. Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells. Exp. Mol. Med. 48, e255. https://doi.org/10.1038/emm.2016.73
  36. Krop, I., Demuth, T., Guthrie, T., Wen, P. Y., Mason, W. P., Chinnaiyan, P., Butowski, N., Groves, M. D., Kesari, S., Freedman, S. J., Blackman, S., Watters, J., Loboda, A., Podtelezhnikov, A., Lunceford, J., Chen, C., Giannotti, M., Hing, J., Beckman, R. and Lorusso, P. 2012. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol. 30, 2307-2313. https://doi.org/10.1200/JCO.2011.39.1540
  37. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A. and Dick, J. E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648. https://doi.org/10.1038/367645a0
  38. Leach, D. R., Krummel, M. F. and Allison, J. P. 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736. https://doi.org/10.1126/science.271.5256.1734
  39. Lee, J. H., Lee, J. E., Kahng, J. Y., Kim, S. H., Park, J. S., Yoon, S. J., Um, J. Y., Kim, W. K., Lee, J. K., Park, J., Kim, E. H., Lee, J. H., Lee, J. H., Chung, W. S., Ju, Y. S., Park, S. H., Chang, J. H., Kang, S. G. and Lee, J. H. 2018. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560, 243-247. https://doi.org/10.1038/s41586-018-0389-3
  40. Lee, Y., Shin, J. H., Longmire, M., Wang, H., Kohrt, H. E., Chang, H. Y. and Sunwoo, J. B. 2016. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell- mediated immunity by selective constitutive and inducible expression of PD-L1. Clin. Cancer Res. 22, 3571-3581. https://doi.org/10.1158/1078-0432.CCR-15-2665
  41. Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., Suri, P. and Wicha, M. S. 2006. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063-6071. https://doi.org/10.1158/0008-5472.CAN-06-0054
  42. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., Zheng, B. J. and Guan, X. Y. 2007. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542-2556. https://doi.org/10.1053/j.gastro.2007.04.025
  43. Memmi, E. M., Sanarico, A. G., Giacobbe, A., Peschiaroli, A., Frezza, V., Cicalese, A., Pisati, F., Tosoni, D., Zhou, H., Tonon, G., Antonov, A., Melino, G., Pelicci, P. G. and Bernassola, F. 2015. p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. USA. 112, 3499-3504. https://doi.org/10.1073/pnas.1500762112
  44. Miyazaki, Y., Matsubara, S., Ding, Q., Tsukasa, K., Yoshimitsu, M., Kosai, K. and Takao, S. 2016. Efficient elimination of pancreatic cancer stem cells by hedgehog/GLI inhibitor GANT61 in combination with mTOR inhibition. Mol. Cancer 15, 49. https://doi.org/10.1186/s12943-016-0534-2
  45. Nakano, M., Kikushige, Y., Miyawaki, K., Kunisaki, Y., Mizuno, S., Takenaka, K., Tamura, S., Okumura, Y., Ito, M., Ariyama, H., Kusaba, H., Nakamura, M., Maeda, T., Baba, E. and Akashi, K. 2019. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene 38, 780-793. https://doi.org/10.1038/s41388-018-0480-0
  46. Nomi, T., Sho, M., Akahori, T., Hamada, K., Kubo, A., Kanehiro, H., Nakamura, S., Enomoto, K., Yagita, H., Azuma, M. and Nakajima, Y. 2007. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 13, 2151-2157. https://doi.org/10.1158/1078-0432.CCR-06-2746
  47. Ohigashi, Y., Sho, M., Yamada, Y., Tsurui, Y., Hamada, K., Ikeda, N., Mizuno, T., Yoriki, R., Kashizuka, H., Yane, K., Tsushima, F., Otsuki, N., Yagita, H., Azuma, M. and Nakajima, Y. 2005. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res. 11, 2947-2953. https://doi.org/10.1158/1078-0432.CCR-04-1469
  48. Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L. N., Karoly, E. D., Freeman, G. J., Petkova, V., Seth, P., Li, L. and Boussiotis, V. A. 2015. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692. https://doi.org/10.1038/ncomms7692
  49. Peitzsch, C., Tyutyunnykova, A., Pantel, K. and Dubrovska, A. 2017. Cancer stem cells: The root of tumor recurrence and metastases. Semin. Cancer Biol. 44, 10-24. https://doi.org/10.1016/j.semcancer.2017.02.011
  50. Prager, B. C., Xie, Q., Bao, S. and Rich, J. N. 2019. Cancer stem cells: The architects of the tumor ecosystem. Cell Stem Cell. 24, 41-53. https://doi.org/10.1016/j.stem.2018.12.009
  51. Prasetyanti, P. R. and Medema, J. P. 2017. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41. https://doi.org/10.1186/s12943-017-0600-4
  52. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F. and Ailles, L. E. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA. 104, 973-978. https://doi.org/10.1073/pnas.0610117104
  53. Reck, M., Rodriguez-Abreu, D., Robinson, A. G., Hui, R., Csoszi, T., Fulop, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., O'Brien, M., Rao, S., Hotta, K., Leiby, M. A., Lubiniecki, G. M., Shentu, Y., Rangwala, R. and Brahmer, J. R. 2016. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823-1833. https://doi.org/10.1056/NEJMoa1606774
  54. Regan, J. L., Schumacher, D., Staudte, S., Steffen, A., Haybaeck, J., Keilholz, U., Schweiger, C., Golob-Schwarzl, N., Mumberg, D., Henderson, D., Lehrach, H., Regenbrecht, C. R. A., Schafer, R. and Lange, M. 2017. Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep. 21, 2813-2828. https://doi.org/10.1016/j.celrep.2017.11.025
  55. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De, Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115. https://doi.org/10.1038/nature05384
  56. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J. C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., Savage, K. J., Hernberg, M. M., Lebbe, C., Charles, J., Mihalcioiu, C., Chiarion-Sileni, V., Mauch, C., Cognetti, F., Arance, A., Schmidt, H., Schadendorf, D., Gogas, H., Lundgren-Eriksson, L., Horak, C., Sharkey, B., Waxman, I. M., Atkinson, V. and Ascierto, P. A. 2015. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320-330. https://doi.org/10.1056/NEJMoa1412082
  57. Rozali, E. N., Hato, S. V., Robinson, B. W., Lake, R. A. and Lesterhuis, W. J. 2012. Programmed death ligand 2 in cancer-induced immune suppression. Clin. Dev. Immunol. 2012, 656340.
  58. Saltz, L., Easley, C. and Kirkpatrick, P. 2006. Panitumumab. Nat. Rev. Drug Discov. 5, 987-988. https://doi.org/10.1038/nrd2204
  59. Saygin, C., Matei, D., Majeti, R., Reizes, O. and Lathia, J. D. 2019. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 24, 25-40. https://doi.org/10.1016/j.stem.2018.11.017
  60. Schweitzer, A. N., Borriello, F., Wong, R. C., Abbas, A. K. and Sharpe, A. H. 1997. Role of costimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86. J. Immunol. 158, 2713-2722.
  61. Selby, M. J., Engelhardt, J. J., Quigley, M., Henning, K. A., Chen, T., Srinivasan, M. and Korman, A. J. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32-42. https://doi.org/10.1158/2326-6066.CIR-13-0013
  62. Sharpe, A. H. and Pauken, K. E. 2018. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153-167. https://doi.org/10.1038/nri.2017.108
  63. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J. and Dirks, P. B. 2003. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
  64. Su, S., Chen, J., Yao, H., Liu, J., Yu, S., Lao, L., Wang, M., Luo, M., Xing, Y., Chen, F., Huang, D., Zhao, J., Yang, L., Liao, D., Su, F., Li, M., Liu, Q. and Song, E. 2018. CD10 (+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172, 841-856.e816. https://doi.org/10.1016/j.cell.2018.01.009
  65. Tatari-Calderone, Z., Semnani, R. T., Nutman, T. B., Schlom, J. and Sabzevari, H. 2002. Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J. Immunol. 169, 6162-6169. https://doi.org/10.4049/jimmunol.169.11.6162
  66. Wang, P., Wan, W. W., Xiong, S. L., Feng, H. and Wu, N. 2017. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Discov. 3, 16105. https://doi.org/10.1038/cddiscovery.2016.105
  67. Wang, Y., Fei, D., Vanderlaan, M. and Song, A. 2004. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7, 335-345. https://doi.org/10.1007/s10456-004-8272-2
  68. Wolchok, J. D. and Saenger, Y. 2008. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13, Suppl 4:2-9. https://doi.org/10.1634/theoncologist.13-S4-2
  69. Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J. and Liu, M. 2018. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J. 32, 2422-2437. https://doi.org/10.1096/fj.201700897R
  70. Zhang, S., Cui, B., Lai, H., Liu, G., Ghia, E. M., Widhopf, G. F. 2nd., Zhang, Z., Wu, C. C., Chen, L., Wu, R., Schwab, R., Carson, D. A. and Kipps, T. J. 2014. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc. Natl. Acad. Sci. USA. 111, 17266-17271. https://doi.org/10.1073/pnas.1419599111
  71. Zheng, F., Dang, J., Zha, H., Zhang, B., Lin, M. and Cheng, F. 2017. PD-L1 promotes self-renewal and tumorigenicity of malignant melanoma initiating cells. Biomed Res. Int. 2017, 1293201.
  72. Zhou, J., Wang, C. Y., Liu, T., Wu, B., Zhou, F., Xiong, J. X., Wu, H. S., Tao, J., Zhao, G., Yang, M. and Gou, S. M. 2008. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J. Gastroenterol. 14, 925-930. https://doi.org/10.3748/wjg.14.925
  73. Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D. K., Mason, R. P., Messing, A. and Parada, L. F. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119-130. https://doi.org/10.1016/j.ccr.2005.07.004