DOI QR코드

DOI QR Code

WNT Signaling in Lung Repair and Regeneration

  • Raslan, Ahmed A. (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University) ;
  • Yoon, Jeong Kyo (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University)
  • Received : 2020.03.05
  • Accepted : 2020.07.23
  • Published : 2020.09.30

Abstract

The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.

Keywords

References

  1. Andersson-Sjoland, A., Karlsson, J.C., and Rydell-Tormanen, K. (2016). ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling. Lab. Invest. 96, 206-217. https://doi.org/10.1038/labinvest.2015.100
  2. Ardhanareeswaran, K. and Mirotsou, M. (2013). Lung stem and progenitor cells. Respiration 85, 89-95. https://doi.org/10.1159/000346500
  3. Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., and Hogan, B.L. (2013). Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025-3036. https://doi.org/10.1172/JCI68782
  4. Barker, N., Tan, S., and Clevers, H. (2013). Lgr proteins in epithelial stem cell biology. Development 140, 2484-2494. https://doi.org/10.1242/dev.083113
  5. Basil, M.C., Katzen, J., Engler, A.E., Guo, M., Herriges, M.J., Kathiriya, J.J., Windmueller, R., Ysasi, A.B., Zacharias, W.J., Chapman, H.A., et al. (2020). The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482-502. https://doi.org/10.1016/j.stem.2020.03.009
  6. Bowden, D.H., Davies, E., and Wyatt, J.P. (1968). Cytodynamics of pulmonary alveolar cells in the mouse. Arch. Pathol. 86, 667-670.
  7. Brechbuhl, H.M., Ghosh, M., Smith, M.K., Smith, R.W., Li, B., Hicks, D.A., Cole, B.B., Reynolds, P.R., and Reynolds, S.D. (2011). Beta-catenin dosage is a critical determinant of tracheal basal cell fate determination. Am. J. Pathol. 179, 367-379. https://doi.org/10.1016/j.ajpath.2011.03.016
  8. Chae, W.J. and Bothwell, A.L.M. (2018). Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 39, 830-847. https://doi.org/10.1016/j.it.2018.08.006
  9. Chapman, H.A., Li, X., Alexander, J.P., Brumwell, A., Lorizio, W., Tan, K., Sonnenberg, A., Wei, Y., and Vu, T.H. (2011). Integrin ${\alpha}6{\beta}4$ identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855-2862. https://doi.org/10.1172/JCI57673
  10. Chen, F. and Fine, A. (2016). Stem cells in lung injury and repair. Am. J. Pathol. 186, 2544-2550. https://doi.org/10.1016/j.ajpath.2016.05.023
  11. Desai, T.J., Brownfield, D.G., and Krasnow, M.A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190-194. https://doi.org/10.1038/nature12930
  12. Flozak, A.S., Lam, A.P., Russell, S., Jain, M., Peled, O.N., Sheppard, K.A., Beri, R., Mutlu, G.M., Budinger, G.R., and Gottardi, C.J. (2010). Beta-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J. Biol. Chem. 285, 3157-3167. https://doi.org/10.1074/jbc.M109.070326
  13. Frank, D.B., Peng, T., Zepp, J.A., Snitow, M., Vincent, T.L., Penkala, I.J., Cui, Z., Herriges, M.J., Morley, M.P., Zhou, S., et al. (2016). Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 17, 2312-2325. https://doi.org/10.1016/j.celrep.2016.11.001
  14. Giangreco, A., Lu, L., Vickers, C., Teixeira, V.H., Groot, K.R., Butler, C.R., Ilieva, E.V., George, P.J., Nicholson, A.G., Sage, E.K., et al. (2012). Beta-catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial-mesenchymal transition. J. Pathol. 226, 575-587. https://doi.org/10.1002/path.3962
  15. Guha, A., Deshpande, A., Jain, A., Sebastiani, P., and Cardoso, W.V. (2017). Uroplakin 3a(+) cells are a distinctive population of epithelial progenitors that contribute to airway maintenance and post-injury repair. Cell Rep. 19, 246-254. https://doi.org/10.1016/j.celrep.2017.03.051
  16. Hogan, B. and Tata, P.R. (2019). Cellular organization and biology of the respiratory system. Nat. Cell Biol. 2019 Jul 25 [Epub]. https://doi. org/10.1038/s41556-019-0357-7
  17. Hogan, B.L., Barkauskas, C.E., Chapman, H.A., Epstein, J.A., Jain, R., Hsia, C.C., Niklason, L., Calle, E., Le, A., Randell, S.H., et al. (2014). Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123-138. https://doi.org/10.1016/j.stem.2014.07.012
  18. Hung, L.Y., Sen, D., Oniskey, T.K., Katzen, J., Cohen, N.A., Vaughan, A.E., Nieves, W., Urisman, A., Beers, M.F., Krummel, M.F., et al. (2019). Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunol. 12, 64-76. https://doi.org/10.1038/s41385-018-0096-2
  19. Hussain, M., Xu, C., Lu, M., Wu, X., Tang, L., and Wu, X. (2017). Wnt/betacatenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 3226-3242. https://doi.org/10.1016/j.bbadis.2017.08.031
  20. Jain, R., Barkauskas, C.E., Takeda, N., Bowie, E.J., Aghajanian, H., Wang, Q., Padmanabhan, A., Manderfield, L.J., Gupta, M., Li, D., et al. (2015). Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 6, 6727. https://doi.org/10.1038/ncomms7727
  21. Kahn, M. (2018). Wnt signaling in stem cells and cancer stem cells: a tale of two coactivators. Prog. Mol. Biol. Transl. Sci. 153, 209-244. https://doi.org/10.1016/bs.pmbts.2017.11.007
  22. Kathiriya, J.J., Brumwell, A.N., Jackson, J.R., Tang, X., and Chapman, H.A. (2020). Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell 26, 346-358.e4. https://doi.org/10.1016/j.stem.2019.12.014
  23. Kauffman, S.L. (1980). Cell proliferation in the mammalian lung. Int. Rev. Exp. Pathol. 22, 131-191.
  24. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835. https://doi.org/10.1016/j.cell.2005.03.032
  25. Kim, H.T., Yin, W., Nakamichi, Y., Panza, P., Grohmann, B., Buettner, C., Guenther, S., Ruppert, C., Kobayashi, Y., Guenther, A., et al. (2019). WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc. Natl. Acad. Sci. U. S. A. 116, 25697-25706. https://doi.org/10.1073/pnas.1911071116
  26. Kumar, P.A., Hu, Y., Yamamoto, Y., Hoe, N.B., Wei, T.S., Mu, D., Sun, Y., Joo, L.S., Dagher, R., Zielonka, E.M., et al. (2011). Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147, 525-538. https://doi.org/10.1016/j.cell.2011.10.001
  27. Lee, J.H. and Rawlins, E.L. (2018). Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev. Biol. 433, 166-176. https://doi.org/10.1016/j.ydbio.2017.09.016
  28. Lee, J.H., Tammela, T., Hofree, M., Choi, J., Marjanovic, N.D., Han, S., Canner, D., Wu, K., Paschini, M., Bhang, D.H., et al. (2017). Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149-1163.e12. https://doi.org/10.1016/j.cell.2017.07.028
  29. Liu, A., Chen, S., Cai, S., Dong, L., Liu, L., Yang, Y., Guo, F., Lu, X., He, H., Chen, Q., et al. (2014). Wnt5a through noncanonical Wnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type II alveolar epithelial cells in vitro. PLoS One 9, e90229. https://doi.org/10.1371/journal.pone.0090229
  30. Liu, Q., Liu, K., Cui, G., Huang, X., Yao, S., Guo, W., Qin, Z., Li, Y., Yang, R., Pu, W., et al. (2019). Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat. Genet. 51, 728-738. https://doi.org/10.1038/s41588-019-0346-6
  31. Lynch, T.J., Anderson, P.J., Rotti, P.G., Tyler, S.R., Crooke, A.K., Choi, S.H., Montoro, D.T., Silverman, C.L., Shahin, W., Zhao, R., et al. (2018). Submucosal gland myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell 22, 653-667.e5. https://doi.org/10.1016/j.stem.2018.03.017
  32. Majidinia, M., Aghazadeh, J., Jahanban-Esfahlani, R., and Yousefi, B. (2018). The roles of Wnt/beta-catenin pathway in tissue development and regenerative medicine. J. Cell. Physiol. 233, 5598-5612. https://doi.org/10.1002/jcp.26265
  33. Mercer, R.R., Russell, M.L., Roggli, V.L., and Crapo, J.D. (1994). Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10, 613-624. https://doi.org/10.1165/ajrcmb.10.6.8003339
  34. Meyerholz, D.K., Suarez, C.J., Dintzis, S.M., and Frevert, C.W. (2018). Chapter 9-Respiratory system. In Comparative Anatomy and Histology (2nd Edition), P.M. Treuting, S.M. Dintzis, and K.S. Montine, eds. (San Diego: Academic Press), pp. 147-162.
  35. Nabhan, A.N., Brownfield, D.G., Harbury, P.B., Krasnow, M.A., and Desai, T.J. (2018). Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science (New York, NY) 359, 1118-1123. https://doi.org/10.1126/science.aam6603
  36. Nusse, R. and Clevers, H. (2017). Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
  37. Oeztuerk-Winder, F., Guinot, A., Ochalek, A., and Ventura, J.J. (2012). Regulation of human lung alveolar multipotent cells by a novel p38alpha MAPK/miR-17-92 axis. EMBO J. 31, 3431-3441. https://doi.org/10.1038/emboj.2012.192
  38. Olajuyin, A.M., Zhang, X., and Ji, H.L. (2019). Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov. 5, 63. https://doi.org/10.1038/s41420-019-0147-9
  39. Raslan, A.A. and Yoon, J.K. (2019). R-spondins: multi-mode WNT signaling regulators in adult stem cells. Int. J. Biochem. Cell Biol. 106, 26-34. https://doi.org/10.1016/j.biocel.2018.11.005
  40. Rawlins, E.L., Okubo, T., Xue, Y., Brass, D.M., Auten, R.L., Hasegawa, H., Wang, F., and Hogan, B.L. (2009). The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4, 525-534. https://doi.org/10.1016/j.stem.2009.04.002
  41. Rieger, M.E., Zhou, B., Solomon, N., Sunohara, M., Li, C., Nguyen, C., Liu, Y., Pan, J.H., Minoo, P., Crandall, E.D., et al. (2016). p300/beta-catenin interactions regulate adult progenitor cell differentiation downstream of WNT5a/protein kinase C (PKC). J. Biol. Chem. 291, 6569-6582. https://doi.org/10.1074/jbc.M115.706416
  42. Rock, J.R. and Hogan, B.L. (2011). Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu. Rev. Cell Dev. Biol. 27, 493-512. https://doi.org/10.1146/annurev-cellbio-100109-104040
  43. Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H., and Hogan, B.L. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. U. S. A. 106, 12771-12775. https://doi.org/10.1073/pnas.0906850106
  44. Rock, J.R., Randell, S.H., and Hogan, B.L. (2010). Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545-556. https://doi.org/10.1242/dmm.006031
  45. Ruiz, E.J., Oeztuerk-Winder, F., and Ventura, J.J. (2014). A paracrine network regulates the cross-talk between human lung stem cells and the stroma. Nat. Commun. 5, 3175. https://doi.org/10.1038/ncomms4175
  46. Salwig, I., Spitznagel, B., Vazquez-Armendariz, A.I., Khalooghi, K., Guenther, S., Herold, S., Szibor, M., and Braun, T. (2019). Bronchioalveolar stem cells are a main source for regeneration of distal lung epithelia in vivo. EMBO J. 38, e102099.
  47. Schindler, A.J., Watanabe, A., and Howell, S.B. (2018). LGR5 and LGR6 in stem cell biology and ovarian cancer. Oncotarget 9, 1346-1355. https://doi.org/10.18632/oncotarget.20178
  48. Skronska-Wasek, W., Gosens, R., Konigshoff, M., and Baarsma, H.A. (2018). WNT receptor signalling in lung physiology and pathology. Pharmacol. Ther. 187, 150-166. https://doi.org/10.1016/j.pharmthera.2018.02.009
  49. Song, H., Yao, E., Lin, C., Gacayan, R., Chen, M.H., and Chuang, P.T. (2012). Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 109, 17531-17536. https://doi.org/10.1073/pnas.1207238109
  50. Spurlin, J.W., 3rd and Nelson, C.M. (2017). Building branched tissue structures: from single cell guidance to coordinated construction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150527. https://doi.org/10.1098/rstb.2015.0527
  51. Stabler, C.T. and Morrisey, E.E. (2017). Developmental pathways in lung regeneration. Cell Tissue Res. 367, 677-685. https://doi.org/10.1007/s00441-016-2537-0
  52. Steinhart, Z. and Angers, S. (2018). Wnt signaling in development and tissue homeostasis. Development 145, dev146589. https://doi.org/10.1242/dev.146589
  53. Tanjore, H., Degryse, A.L., Crossno, P.F., Xu, X.C., McConaha, M.E., Jones, B.R., Polosukhin, V.V., Bryant, A.J., Cheng, D.S., Newcomb, D.C., et al. (2013). Beta-catenin in the alveolar epithelium protects from lung fibrosis after intratracheal bleomycin. Am. J. Respir. Crit. Care Med. 187, 630-639. https://doi.org/10.1164/rccm.201205-0972OC
  54. Tata, P.R., Mou, H., Pardo-Saganta, A., Zhao, R., Prabhu, M., Law, B.M., Vinarsky, V., Cho, J.L., Breton, S., Sahay, A., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218-223. https://doi.org/10.1038/nature12777
  55. Tata, P.R. and Rajagopal, J. (2017). Plasticity in the lung: making and breaking cell identity. Development 144, 755-766. https://doi.org/10.1242/dev.143784
  56. Vaughan, A.E., Brumwell, A.N., Xi, Y., Gotts, J.E., Brownfield, D.G., Treutlein, B., Tan, K., Tan, V., Liu, F.C., Looney, M.R., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621-625. https://doi.org/10.1038/nature14112
  57. Volckaert, T., Campbell, A., and De Langhe, S. (2013). c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse. PLoS One 8, e71426. https://doi.org/10.1371/journal.pone.0071426
  58. Volckaert, T., Dill, E., Campbell, A., Tiozzo, C., Majka, S., Bellusci, S., and De Langhe, S.P. (2011). Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J. Clin. Invest. 121, 4409-4419. https://doi.org/10.1172/JCI58097
  59. Wansleeben, C., Barkauskas, C.E., Rock, J.R., and Hogan, B.L. (2013). Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip. Rev. Dev. Biol. 2, 131-148. https://doi.org/10.1002/wdev.58
  60. Wu, X., van Dijk, E.M., Ng-Blichfeldt, J.P., Bos, I.S.T., Ciminieri, C., Konigshoff, M., Kistemaker, L.E.M., and Gosens, R. (2019). Mesenchymal WNT-5A/5B signaling represses lung alveolar epithelial progenitors. Cells 8, 1147. https://doi.org/10.3390/cells8101147
  61. Xi, Y., Kim, T., Brumwell, A.N., Driver, I.H., Wei, Y., Tan, V., Jackson, J.R., Xu, J., Lee, D.K., Gotts, J.E., et al. (2017). Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19, 904-914. https://doi.org/10.1038/ncb3580
  62. Yao, E., Lin, C., Wu, Q., Zhang, K., Song, H., and Chuang, P.T. (2018). Notch signaling controls transdifferentiation of pulmonary neuroendocrine cells in response to lung injury. Stem Cells 36, 377-391. https://doi.org/10.1002/stem.2744
  63. Zacharias, W.J., Frank, D.B., Zepp, J.A., Morley, M.P., Alkhaleel, F.A., Kong, J., Zhou, S., Cantu, E., and Morrisey, E.E. (2018). Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251-255. https://doi.org/10.1038/nature25786
  64. Zemke, A.C., Teisanu, R.M., Giangreco, A., Drake, J.A., Brockway, B.L., Reynolds, S.D., and Stripp, B.R. (2009). beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. Am. J. Respir. Cell Mol. Biol. 41, 535-543. https://doi.org/10.1165/rcmb.2008-0407OC
  65. Zepp, J.A., Zacharias, W.J., Frank, D.B., Cavanaugh, C.A., Zhou, S., Morley, M.P., and Morrisey, E.E. (2017). Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134-1148.e10. https://doi.org/10.1016/j.cell.2017.07.034
  66. Zhang, Y., Goss, A.M., Cohen, E.D., Kadzik, R., Lepore, J.J., Muthukumaraswamy, K., Yang, J., DeMayo, F.J., Whitsett, J.A., Parmacek, M.S., et al. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat. Genet. 40, 862-870. https://doi.org/10.1038/ng.157
  67. Zuo, W., Zhang, T., Wu, D.Z., Guan, S.P., Liew, A.A., Yamamoto, Y., Wang, X., Lim, S.J., Vincent, M., Lessard, M., et al. (2015). p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature 517, 616-620. https://doi.org/10.1038/nature13903

Cited by

  1. Anastral Spindle 3/Rotatin Stabilizes Sol narae and Promotes Cell Survival in Drosophila melanogaster vol.44, pp.1, 2021, https://doi.org/10.14348/molcells.2020.0244
  2. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19 vol.8, 2021, https://doi.org/10.3389/fmed.2021.644678
  3. The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung vol.22, pp.5, 2020, https://doi.org/10.3390/ijms22052566
  4. Attenuation of clinical and immunological outcomes during SARS‐CoV‐2 infection by ivermectin vol.13, pp.8, 2020, https://doi.org/10.15252/emmm.202114122