• 제목/요약/키워드: $\alpha$-SiAlON

검색결과 201건 처리시간 0.028초

Effect of Electromagnetic Stirring on Microstructure Evolution in Solidification of a Near-Eutectic Al-Si Alloy

  • Guo, Qing-Tao;Sim, Jae-Gi;Jang, Young-Soo;Choi, Byoung-Hee;Lee, Moon-Hyoung;Hong, Chun-Pyo
    • 한국주조공학회지
    • /
    • 제28권5호
    • /
    • pp.226-230
    • /
    • 2008
  • 본 논문에서는 공정조성 부근의 Al-Si 합금의 미세구조에 미치는 전자기교반(EMS)의 영향에 대하여 연구하였다. 초정 a 상의 형상에 미치는 전자기교반의 세기의 영향을 조사하기 위하여 각각 교반장치에 60, 80,및 120V의 전압을 가하여 미세조직을 관찰하였다. 60V 이하의 전압이 인가되었을 때 전자기교반의 효과가 나타나지 않은 반면에, 80V 이상의 전압으로 5초 이상 인가되었을 때 구상화된 초정 a 상을 얻을 수 있었다. 인가된 전압이 120V일 때 초정 a 상은 보다 균일한 분포를 가지며 구상화 되었다. 전자기교반의 세기와 함께 교반시간의 영향을 확인하기 위하여 교반시간을 증가시키면서 미세조직을 관찰하였다. 또한 초정 a 상의 형상에 미치는 주조변수의 영향에 대해서도 실험하였다.

고순도 초미립자 물라이트 분말 합성에 대한 연구 (I) (Studies on the Synthesis of High Purity and Fine Mullite Powder (I))

  • 김경용;김윤호;김병호;이동주
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

The corrosion of aluminium alloy and release of intermetallic particles in nuclear reactor emergency core coolant: Implications for clogging of sump strainers

  • Huang, Junlin;Lister, Derek;Uchida, Shunsuke;Liu, Lihui
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1345-1354
    • /
    • 2019
  • Clogging of sump strainers that filter the recirculation water in containment after a loss-of-coolant accident (LOCA) seriously impedes the continued cooling of nuclear reactor cores. In experiments examining the corrosion of aluminium alloy 6061, a common material in containment equipment, in borated solutions simulating the water chemistry of sump water after a LOCA, we found that Fe-bearing intermetallic particles, which were initially buried in the Al matrix, were progressively exposed as corrosion continued. Their cathodic nature $vis-{\grave{a}}-vis$ the Al matrix provoked continuous trenching around them until they were finally released into the test solution. Such particles released from Al alloy components in a reactor containment after a LOCA will be transported to the sump entrance with the recirculation flow and trapped by the debris bed that typically forms on the strainer surface, potentially aggravating strainer clogging. These Fe-bearing intermetallic particles, many of which had a rod or thin strip-like geometry, were identified to be mainly the cubic phase ${\alpha}_c-Al(Fe,Mn)Si$ with an average size of about $2.15{\mu}m$; 11.5 g of particles with a volume of about $3.2cm^3$ would be released with the dissolution of every 1 kg 6061 aluminium alloy.

LPG 충전소와 탱크로리의 가스 이$\cdot$충전 접속장치 커플러용 6/4 단조 황동의 부식특성에 관한 연구 (Corrosion properties of the 6/4 forged brass for the coupler transferring LPG between tank lorry and LPG station)

  • 길성희;권정락;김지윤;도정만
    • 한국가스학회지
    • /
    • 제5권2호
    • /
    • pp.14-21
    • /
    • 2001
  • LPG를 이$\cdot$충전하는 접속장치 커플러의 손상기구를 조사하기 위하여 가스 충전소에서 장기간 사용한 커플러 및 부식 시험한 6/4 단조 황동의 미세 조직 및 부식생성물의 화학조성을 조사하였다. 커플러의 운전 중에 형성된 부식피막의 화학조성은 6/4 단조 황동의 합금 원소인 CU, Zn 이외에 주로 가스 또는 대기로부터 유입된 것으로 추정되는 S, C, O, Al, Si 등의 원소들이 검출되었다. 커플러의 미세 조직은 기지조직($\alpha$) 속에 석출상($\beta$)들이 불규칙하게 분산되어 있는 2상 구조를 이루고 있었으며, 납의 함량이 높은 커플러의 경우 충격강도가 낮게 나타났다. 6/4 단조 황동의 충격강도는 $10\%$ HCl 수용액과 Mattsson 용액의 부식 환경 하에서 거의 영향을 받지 않았으나, 응력부식 시험편에서는 시험시간이 증가됨에 따라 균열이 결정립계를 따라 전파되었다.

  • PDF

천이금속에 따른 SiC계 복합체의 전기적 특성 (Electrical Properties of SiC Composites by Transition Metal)

  • 신용덕;서재호;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

A356 합금 미세조직변화에 따른 기계적 특성에 관한 연구 (Mechanical Behavior of A356 depending on the Variation of Microstructure)

  • 김국주;권용남;이영선;이정환;이신호;이재현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.273-276
    • /
    • 2004
  • A356 alloy is one of the most popular casting aluminum alloys due to its good castability. It is well known that the mechanical properties of A356 alloy strongly depend on its characteristic microstructure, such as the size of eutectic Si, primary $\alpha$ dendrite and so on. These microstructural features are determined during the casting and solidification process, which implies the strong relationship with mechanical properties with solidification methods. In the present study, the mechanical characteristics of A356 alloy was investigated by using squeeze cast control arm in terms of the microstructural features, such as the size of eutectic Si, primary a dendrite. By doing so, the most favorable microstructure of A356 could be determined for Al control arm that should be one of the most reliable parts in automobile.

  • PDF

알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향 (Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze)

  • 김지환;김지태;김진한;박흥일;김성규
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.

상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향 (Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering)

  • 주진영;박미림;신용덕;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

SiC 전도성 세라믹 복합체의 특성에 미치는 TiB$_2$의 영향 (Effect of TiB$_2$on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;박미림;소병문;이동문
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.141-146
    • /
    • 2002
  • The mechanical and electrical properties of the pressureless sintered SiC-TiB$_2$electroconductive ceramic composites were investigated as functions of the transition metal of TiB$_2$. The result of phase analysis for the SiC-TiB$_2$ composites by XRD revealed $\alpha$-SiC(6H), TiB$_2$, and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phases. The relative density showed the lowest 84.8% for the SiC-TiB$_2$composites added with 39vol.%TiB$_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 7.8 MPa.m$^{1}$2/ for composites added with 39vol.%TiB$_2$under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%TiB$_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%TiB$_2$composites was all positive temperature coefficient resistance(PCTR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.EX>.