Natural gas demand for power generation continued to increase until 2013 due to the expansion of large-scale LNG power plants after the black-out of 2011. However, natural gas demand for power generation has decreased sharply due to the increase of nuclear power and coal power generation. But demand for power generation has increased again as energy policies have changed, such as reducing nuclear power and coal power plants, and abnormal high temperatures and cold waves have occurred. If the gas pipeline pressure can be properly maintained by predicting these fluctuations, it can contribute to enhancement of operation efficiency by minimizing the operation time of facilities required for production and supply. In this study, we have developed a regression model with daily power demand and base power generation capacity as explanatory variables considering characteristics by day of week. The model was constructed using data from January 2013 to December 2016, and it was confirmed that the error rate was 4.12% and the error rate in the 90th percentile was below 8.85%.