Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.