Paper folding is a versatile tool that can be used not only as a mathematical model for analyzing the geometric properties of plane and spatial figures but also as a visual method for finding the real roots of polynomial equations. The historical evolution of origami's geometric and algebraic techniques has led to the discovery of definitions and properties that can enhance one's cognitive understanding of mathematical concepts and generate mathematical interest and motivation on an emotional level. This paper aims to examine the history of origami geometry, the utilization of origami for solving polynomial equations, and the process of determining the real roots of quadratic, cubic, and quartic equations through origami techniques.