Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.