Tariquzzaman, Md.;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
109
Identity recognition in real environment with a reliable mode is a key issue in human computer interaction (HCI). In this paper, we present a robust person identification system considering score-based optimal reliability measure of audio-visual modalities. We propose an extension of the modified reliability function by introducing optimizing parameters for both of audio and visual modalities. For degradation of visual signals, we have applied JPEG compression to test images. In addition, for creating mismatch in between enrollment and test session, acoustic Babble noises and artificial illumination have been added to test audio and visual signals, respectively. Local PCA has been used on both modalities to reduce the dimension of feature vector. We have applied a swarm intelligence algorithm, i.e., particle swarm optimization for optimizing the modified convection function's optimizing parameters. The overall person identification experiments are performed using VidTimit DB. Experimental results show that our proposed optimal reliability measures have effectively enhanced the identification accuracy of 7.73% and 8.18% at different illumination direction to visual signal and consequent Babble noises to audio signal, respectively, in comparison with the best classifier system in the fusion system and maintained the modality reliability statistics in terms of its performance; it thus verified the consistency of the proposed extension.