The concentration levels of gaseous elemental mercury (GEM) in ambient air have been investigated from a monitoring station located in Yang Jae district of Seoul, Korea for a long-term period covering 1997 through 2002. The mean concentration of Hg, if computed based on its hourly measurement data for this six-year period, was $5.32\pm3.53 ng m^{-3} (N = 27,170)$. The inspection of the diurnal distribution patterns indicated the presence of notably high concentration levels during nighttime relative to daytime (e.g., the mean hourly value as high as $9 ng m^{-3}$ in winter nighttime). When divided seasonally, the highest mean of $6.12 ng m^{-3}$ was also observed during winter followed by spring, fall, and summer. The results of our analysis confirmed the relative dominance of winter (seasonally) or nighttime (diurnally), while exhibiting a complicated trend on a long-term basis. Examination of our data over a different temporal scale consistently indicated that dynamic changes in Hg concentrations occurred through time in line with changes in the strength and diversity of the source processes. It is thus acknowledged that the presence of unusually high Hg levels is the consequence of intense man-made activities, while such signatures can vary in a competitive manner.