For $0<p{\leq}{\infty}$ and a convex body $K$ in $\mathbb{R}^n$, Lutwak, Yang and Zhang defined the concept of dual $L_p$-centroid body ${\Gamma}_{-p}K$ and $L_p$-John ellipsoid $E_pK$. In this paper, we prove the following two results: (i) For any origin-symmetric convex body $K$, there exist an ellipsoid $E$ and a parallelotope $P$ such that for $1{\leq}p{\leq}2$ and $0<q{\leq}{\infty}$, $E_qE{\supseteq}{\Gamma}_{-p}K{\supseteq}(nc_{n-2,p})^{-\frac{1}{p}}E_qP$ and $V(E)=V(K)=V(P)$; For $2{\leq}p{\leq}{\infty}$ and $0<q{\leq}{\infty}$, $2^{-1}{\omega_n}^{\frac{1}{n}}E_qE{\subseteq}{\Gamma}_{-p}K{\subseteq}{2\omega_n}^{-\frac{1}{n}}(nc_{n-2,p})^{-\frac{1}{p}}E_qP$ and $V(E)=V(K)=V(P)$. (ii) For any convex body $K$ whose John point is at the origin, there exists a simplex $T$ such that for $1{\leq}p{\leq}{\infty}$ and $0<q{\leq}{\infty}$, ${\alpha}n(nc_{n-2,p})^{-\frac{1}{p}}E_qT{\supseteq}{\Gamma}_{-p}K{\supseteq}(nc_{n-2,p})^{-\frac{1}{p}}E_qT$ and $V(K)=V(T)$.