Proceedings of the KSME Conference (대한기계학회:학술대회논문집)
The Korean Society of Mechanical Engineers
- Semi Annual
2001.11a
-
Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties
$(\xi>0)$ , next constant properties$(\x=0)$ and decreasing properties$(\xi<0)$ under constant crack tip properties and crack tip speed. -
In the case of a crack propagation, a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile test was carried out using thermocouples to monitor the variation of temperature with SA516 Gr70. The experimental results show that the temperature of specimen was increased
$3.6^{\circ}C$ at static load condition. And the thermal effect was investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip ws lower about 19.3% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity. -
The PTS reference temperature of reactor pressure vessel for one of the Korean NPPs has been predicted to exceed the screening criteria before it reaches it's design life. To cope with this issue, a plant-specific PTS analysis had been performed in accordance with the Regulatory Guide 1.154 in 1999. As a result of that analysis, it was found that current methodology of RG. 1.154 was very conservative. The objective of this study is to examine the effects of changing various input parameters and to determine the amount of conservatism of the current PTS analysis method. To do this, based on the past PTS analysis experience, parametric study were performed for various models using modified VISA-II code. This paper discusses the analysis results and recommendations to reduce the conservatism of current analysis method.
-
In this paper, we examine the steady state dynamic electromechanical behavior of an eccentric Yoffe crack in a piezoelectric ceramic layer bonded between two orthotropic elastic layers under the combined anti-plane mechanical shear and in-plane electrical loadings. We adopted permeable crack face condition. Numerical values on the dynamic energy release rate are obtained. The initial crack propagation orientation for PZT-5H piezoceramic is also predicted by maximum energy release rate criterion.
-
Hi-Nicalon SiC fiber reinforced SiC composites (SiC/SiC) have been fabricated by the reaction sintering process. Braided Hi-Nicalon SiC fiber with double interphases of BN and SiC was used in this composite system. The microstructures and the mechanical properties of reaction sintered SiC/SiC composites were investigated through means of electron microscopies (SEM, TEM, EDS) and bending tests. The matrix morphology of reaction sintered SiC/SiC composites was composed of the SiC phases that the composition of the silicon and the carbon is different. The TEM analysis showed that the residual silicon and the unreacted carbon were finely distributed in the matrix region of reaction sintered SiC/SiC composites. Reaction sintered SiC/SiC composites also represented proper flexural strength and fracture energy, accompanying the noncatastrophic failure behavior.
-
As increasing underground facilities, more effective management is needed nowadays. It is important to get an accurate information of underground facilities to manage that, so some methods of detecting location - electromagnetic induction method, ground penetration radar method, sonic method - are used to obtain the information of underground facilities. In this study, a magnetic method to detect underground facilities was developed. In the magnetic method, underground facilities are detected by a detector and the magnetic marker which is a permanent magnet and used to marking the location by attaching underground facilities. A proper characteristic of the magnetic marker was optimized by maxwell 20 magnetic field analysis tool, a test field was constructed with the magnetic marker, PVC pipe, and steel pipe under ground 1.5m, and the detector was made by modifying a common ferromagnetic detector. Magnetic strengths of the magnetic marker were measured by the detector at each location in the test field, and analyzed by magnetic field analysis tool in the same condition. In the result, the underground pipes were detectable within the deviation
${\pm}20cm$ at PVC pipe and${\pm}10cm$ at steel pipe respectively. The steel pipe was more detectable by ferromagnetism. The developed magnetic method can be applied to maintain and manage underground facilities. -
The interfacial adhesive joining characteristics of the foams are very important for the structural integrity of sandwich structures. Peel strength is one of the best criteria for the interfacial characteristics of the sandwich structures and peel energy is most commonly used for the interfacial characteristics. The peel strength is the first peak force per unit width of bond line required to produce progressive separation by the wedge or other crack opening type action of two adherends where one or both undergo significant bending and the peel energy is the surface active energy per unit width of bond line. In this work, to investigate the strengthening effect of resin treatment on the interfacial surface of foam material, peel strength and peel energy of epoxy resin treated polyurethane foam core sandwich structures were obtained by the cleavage peel tests and compared with those of non surface treated polyurethane foam core sandwich structures.
-
API 5L X65 배관의 모재 기리 및 원주방향, 심용착금속, 원주용착금속에 대한 고주기피로시험 결과를 요약하면 다음과 같다. (1) 모재 길이방향이 원주방향보다 항복강도 및 항복비가 높게 나타난 압연 방향에 따라 피로특성이 다르게 나타났고, 항복비가 작아질수록 피로강도가 작아졌다. (2) 모재의 피로강도는 항복강도보다 높게 나타났지만 용착금속의 피로강도는 낮게 나타났다. (3) 용착금속은 모재보다 항복강도 및 인장강도가 상당히 높았지만 피로강도는 오히려 작게 나타났다.
-
Measurement of welding residual stresses is one of important tasks to assess the structural integrity of welded structures. For operating components, especially, nondestructive techniques are required. By now, authors have proposed a new residual stress evaluation method, the bead flush method, where residual stresses are calculated from eigenstrain distribution determined by surface removal of reinforcement. In this paper, a brief description of the bead flush method is given and its utility and problem to be overcome are discussed. And also stabilization method of solution set of eigenstrain in inverse analysis is proposed.
-
The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.
-
Fracture behaviors of pipes with local wall thinning is very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe drosion-corrosion damage. However, effect of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, ovalization+cracking, local buckling and local buckling+cracking. Also, maximum load was successfully evaluated.
-
The LBB behavior and the crack opening displacement after a crack penetrated wall thickness of statically indeterminate piping system were investigated in this study, compared with statically determinate piping system. The reduction of ultimate strength caused by a crack was relatively small in the statically indeterminate piping system. The statically indeterminate piping system has more safety margin for LBB behavior than the statically determinate piping system. The crack opening displacement could be evaluated by using the plastic rotation angle proposed to evaluate the crack opening displacement after crack penetration in pipe with a non-penetrating crack.
-
In this paper, shielding effectiveness(SE) of the shielding material of electromagnetic(EM) waves was investigated with actual experiments. The materials used in this study were made up of sputtering, film and powder of conductive materials - Cr, Al, Ag and Cu etc. Also, the polyester film was used as a base material. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, aluminum and chromium were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied when the sputtering. The SE strongly depended on the electric resistance by density of sputtering and painting particles. SE increased as the density of particles was increasing.
-
An engineering estimation equation for the crack opening displacement (COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.
-
In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as vacuum degassing(VD) and electro-slag remelting(ESR) methods. After the steel-making process, they were normalized at
$955^{\circ}C$ , quenched at$843^{\circ}C$ , and finally tempered at$550^{\circ}C$ or$450^{\circ}C$ , resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-cycle fatigue(LCF) tests, fatigue crack growth rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process. -
Fatigue strength evaluation was carried out for the core support structure of a low voltage circuit breaker. The impact load acting on the core support was calculated based on the strains measured during operation. A three-dimensional finite element analysis was performed to determine local peak stresses for fatigue evaluation. Fatigue safety factors were calculated using the modified Goodman, Gerber, Soderberg, and modified Findley lines, considering the magnitude of the residual stress and impact load.
-
Effect of mean stress on the fatigue life of natural rubber for engine mount was investigated. Fatigue damage parameter based on the maximum Green-Lagrange strain was employed to account for the effect of mean stress. A procedure to predict the fatigue life of rubber components based on the maximum Green-Lagrange strain method was proposed. Nonlinear finite element analysis and fatigue test of jang-gu shape specimen were conducted to predict the fatigue life of engine mount. Predicted fatigue lives have a good agreement with tested lives within a factor of 3.
-
It has recently been raised main issue how solve the problem of insufficient energy. One of the solution is to increase the thermal efficiency of power generation system. For the purpose of high efficiency, it is necessary to increase the steam temperature and pressure. So, the use of modified
$9{\sim}12%Cr$ steel having superior creep rupture strength and oxidation resistance is required to endure such severe environment. The evaluation of creep properties of those heat resistance material is very important to secure the reliability of high temperature and pressure structural components. Since creep properties are determined by microstructural change such as carbide precipitation and coarsening, It is certain that there are some relationship between creep properties and hardness affected by microstructure. In this study, SP-Creep ruptured test for newly developed 9Cr steel being used as boiler valve material was performed, and creep properties of the material were evaluated. Also, hardness test were performed and hardness results were related to the creep properties such as LMP and creep strength to verify the availability of SP-Creep test as creep test method. -
Lee, Song-In;Kwon, Il-Hyun;Kim, Yon-Jig;Ahn, Byung-Guk;Ahn, Haeng-Keun;Baek, Seung-Se;Yu, Hyo-Sun 111
Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at$600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at$650^{\circ}C$ as follows:$Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$ . -
For two kinds of 25Cr-20Ni stainless steels, SUS310J1TB TB and SUS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392MPa and from 923 to 973K with a special reference to tertiary creep. The average creep life of SUS310J1TB was about 100 times longer than that of the SUS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in SUS310J1TB, while that of the SUS310S was 274 kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for SUS310S below PLB is close to the that for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for SUS310J1TB was reduced to the activation energy for diffusion of chromium atom in a gamma steel. The stress exponent of SUS310S was about 12 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for SUS310J1TB was in a power law creep region, its stress exponent was 8.3 larger than that of SUS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in SUS310J1TB.
-
The creep constants which are used to the reference stress equations of creep damage were obtained to type 316LN stainless steel, and their determining methods were described in detail. Typical Kachanov and Rabotnov(K-R) creep damage model was modified into the damage equations with reference stress concepts, and the modified equations were applied practically to type 316LN stainless steel. In order to determine the reference stress value, a series of high-temperature tensile tests and creep tests were accomplished at
$550^{\circ}C$ and$600^{\circ}C$ . By using the experimental creep data, the creep constants used in reference stress equations could be obtained to type 316LN stainless steel, and a creep curve on rupture strain was predicted. The reference stress concept on creep damage can be utilized easily as a design tool to predict creep life because the process, which is quantified by the measurement of voids or micro cracks during creep, is omitted. -
The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at
$630^{\circ}C$ . And the DC potential drop method and destructive methods such as tensile,$K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation. -
In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.
-
This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel. The steel was artificially aged at
$300{\sim}650^{\circ}C$ for$240{\sim}10,000hrs$ . and investigated at$-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and${\eta}-phase(Fe_2Mo)$ precipitated in the grain bounderies seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain bounderies and promote the current density observed in electrochemical polarization curves. The electrochemical and mechanical properties of superaustenitic stainless steel was drastically decreased in the specimen aged at$650^{\circ}C$ . -
In case of high capacity load force as millions of tons, it is difficult to measure the force with load cell. But we can measure and calculate the force with applied pressure and ram area of hydraulic jack. The 5,200 ton compression load tester is composed of thirteen hydraulic jack with 400 ton capacity. This paper explains the method of measuring the vertical compression load and provides characteristics of unit jack, and displacement of upper structure under maximum load condition.
-
This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.
-
Bogie frame of the electric car is an important structural member for the support of vehicle loading. In general, more than 25 years' durability is necessary. Much study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. One of the useful methods is reliability-based approach. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric car, which is under the running test. We used two approachs. In the first approach probabilistic distribution of S-N curve is used. In the second approach, limit state function is used.
-
Recommended seismic design guide for the flat bottom vertical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.
-
In order to investigate the fracture behaviors(perforation modes) and resistance to perforation during ballistic impact of aluminum alloy plate, ballistic tests were conducted. Depth of penetration experiments with 5.56mm-diameter ball projectile launched into 25mm-thickness Al 5052-H34 targets were conducted. A powder gun launched the 3.55g projectiles at striking velocities between 0.6 and 1.0 km/s. radiography of the damaged targets showed different penetration modes as striking velocities increased. Resistance to perforation is determined by the protection ballistic limit(
$V_{50}$ ), a statistical velocity with 50% probability for complete perforation. Fracture behaviors and ballistic tolerance, described by perforation modes, are respectfully observed at and above ballistic limit velocities, as a result of$V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with$0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile.$V_{50}$ tests with$0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete perforation during PTP tests. The effect of various impact velocity are studied with depth of penetration. -
Lee, Dong-Hwan;Jeoung, Young-Hun;Baek, Seung-Se;Ha, Jeong-Soo;Song, Gee-Hook;Lee, Song-In;Yu, Hyo-Sun 180
In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation. -
Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.
-
To obtain
$A_2$ experimentally in the$J-A_2$ theory, deformation field on the lateral surface of a CT specimen was to be determined using Laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure$A_2$ continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and$A_2$ were explored. -
This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as
$SiO_2,\;Al_2O_3$ , and$TiO_2$ . Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated$TiO_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today. -
In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.
-
The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.
-
The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.
-
Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degradation of 2.25Cr-1Mo steel is investigated. Firstly, a number of 2.25Cr-1Mo steel samples were heat-treated, and their damage mechanism was examined. Secondly, Ultrasonic nonlinear parameter was measured. Nonlinear acoustic parameter was found to be clearly sensitive to the material degradation.
-
It is well known that composite laminates are easily damaged by low velocity impact. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. This study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.
-
The stress intensity factors have been widely used in numerical studies of crack growth direction. However in many cases, omissive terms of the series expansion are quantitatively significant, so we consider the computation of such terms. For this purpose, we used the finite element method with isometric quadratic quarter-point elements. For examples, infinite square plate with a slant crack subjected to a uniaxial load is analyzed. The numerical analysis were performed for the wide range of crack tip element lengths and inclined angles. The numerical results obtained are compared with the theoretical solutions. Also they were accurate and efficient.
-
Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Park, Yoon-Won;Kang, Suk-Chull;Choi, Young-Hwan;Lee, Jin-Ho 240
Ultrasonic inspection system is consisted of the operator, equipment and procedure. The reliability of results in ultrasonic inspection is affected by its ability. Furthermore, the reliability of nondestructive testing is influenced by the inspection environment, other materials and types of defect. Therefore, it is very difficult to estimate the reliability of NDT due to various factors. In this study, the probability of detection, used logistic probability model and Monte Carlo simulation, estimated the reliability of ultrasonic inspection. The utility of the NDT reliability assesment is verified by the analysis of the data from round robin test applied these models. -
Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Park, Yoon-Won;Kang, Suk-Chull;Choi, Young-Hwan;Lee, Jin-Ho 246
The performance demonstration round robin test was conducted to quantify the capability of ultrasonic inspection for in-service and to address some aspects of reliability for nondestructive evaluation. The fifteen inspection teams who employed procedures that met or exceeded ASME Sec. XI code requirements detected the pinping of nuclear power plant with various cracks to evaluate the capability of detection. With data from PD-RR test, the performance of ultrasonic nondestructive inspection could be assessed using probability of detection and length and depth sizing of cracks. -
With the help of newly arrived technology such as PC clustering, molecular dynamics (MD) seems to be promising for large-scale materials simulations. A cost-effective cluster is set up using commodity PCs connected over Ethernet with fast switching devices and free software Linux. Executing MD simulations in the parallel sessions makes it possible to carry out large-scale materials simulations at acceptable computation time and costs. In this study, the MD computer code for fracture simulation is modified to comply with MPI (Message Passing Interface) specification, and runs on the PC cluster in parallel mode flawlessly. It is noted that PC clusters can provide a rather inexpensive high-performance computing environment comparing to supercomputers, if properly arranged.
-
Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.
-
Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steels were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.
-
In order to evaluate variation of fatigue data of the LP steam turbine blade steel, it is important to estimate P - S - N curves to accurately define the probability distributions. In this study, new procedure is introduced to determine the expression of P - S - N curves. For this purpose, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probability distributions of the fatigue life were examined by the proposed analysis. Furthermore, parameter estimation for P - S - N curves was performed using various optimization to maximize the correlation coefficient. As a result of this, sequential linear programing method is used for estimation of P - S - N curves.
-
Aluminum/Aramid Fiber Reinforced Plastic(Al/AFRP) laminates are applied to the fuselage-wing intersection. The main objective of this study was to evaluate the delamination zone behavior of Al/AFRP with a saw-cut and circular hole using average stress criterion and the effect of notch geometry. Mechanical tests were carried out to determine the cyclic-bending moment and delamination zone observed ultrasonic C-scan pictures. In case of Al/AFRP containing saw-cut specimen, the shape and size of the delamination zone formed along the fatigue crack. However, in case of Al/AFRP containing circular hole specimen, the shape and size of delamination zone formed two types. first type, delamination zone formed along the fatigue crack. Second type, not observed fatigue crack. Therefore, delamination zone was formed dependently of the circular hole shape.
-
Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to
$0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case. -
An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.
-
Adherend-adhesive interface failure will occur on a macroscale when surface preparation or material quality are poor. It is well known that the stress singularity occurs at the edges of interface between the adhernds and the adhesive, and that crack will initiate from these positions. Also if bubbles are created and remained in the adhesive layer during the bonding process, the stress concentrates around these hole defects. In this paper, the effects of the hole defects on the SIF of interface crack were examined. From results, SIF increased with the hole defects near the interface crack and increased with an decreae in the upper adherend thickness, an increase in the center adhesive thickness.
-
Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. In this study mode I, II and III stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by applying weight function method. The weight function method for two dimensional mixed-mode problem is extended to three dimensional one and it is verified.
-
A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.
-
This study verified the relationship between fracture mechanics parameters
$({\Delta}K,\;{\Delta}K_{eff},\;K_{max})$ and X-ray parameters$(\sigma_r,\;B)$ for SG365 steel at elevated temperature up to$300^{\circ}C$ . The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low${\Delta}K$ region, reach to a maximum value at a certain value of$K_{max}\;or\;{\Delta}K$ and then decrease. Residual stress were independent on stress ratio by arrangement of${\Delta}K$ and half value breadth were independent by the arrangement of$K_{max}$ . The equation of$\sigma_r-{\Delta}K$ was established by the experimental data. Therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters. -
A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned domains is presented by introducing interface elements in this paper. The interface element method (IEM) satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier technique. The moving least square (MLS) approximation in the present study is implemented to construct the shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS approximation and integration domains provides a consistent numerical integration due to one form of rational functions in an integration domain. The compatibility of displacements on the boundaries of the finite elements and the interface elements is always preserved in this method, and the completeness of the shape functions of the interface elements guarantees the convergence of numerical solutions. The numerical examples show that the interface element method is a useful tool for the analysis of a partitioned system and for a global-local analysis.
-
While contacting directly with ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) for various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a systematic 3-D mesh generation of tires considering the detailed tread pattern. Basically, tire body and tread meshes are separately generated, and then both are to be combined. For the systematic mesh generation, which consists of a series of meshing steps, we develop in-house subroutines which utilize the useful functions of I-DEAS solid modeler. The detailed pattern mesh can be imparted partially or completely.
-
We propose an implicit numerical implementation for the Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure. We apply generalized trapezoidal rule to integrate the equations and determine the consistent tangent moduli. The implementation may be used with updated Lagrangian formulation. We test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.
-
A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions.
-
The split Hopkinson pressure bar has been used for a high strain rate impact test. Also it has been developed and modified for compression, shear, tension, elevated temperature and subzero tests. In this paper, SHPB compression tests have been performed with pure titanium at elevated temperatures. The range of temperature is from room temperature to
$1000^{\circ}C$ with interval of$200^{\circ}C$ . To raise temperature of the specimen, a radiant heater which is composed of a pair of ellipsoidal cavities and halogen lamps is developed at high temperature SHPB test. There are some difficulties in a high temperature test such as temperature gradient, lubrication and prevention of oxidation of specimen. The temperature gradient of specimen is affected by the variation of temperature. Barreling occurred at not properly lubricated specimen. Stress-strain relations of pure titanium have been obtained in the range of strain rate at$1900/sec{\sim}2000/sec$ and temperature at$25^{\circ}C{\sim}1000^{\circ}C$ . -
Design requirements for the nuclear fuel assembly grid of the pressurized light water reactor(PLWR) are scrutinized from the mechanical/structural point of view. As a result of the scrunity, mechanical/structural test facilities on the spacer grid of the PLWR Fuel are set up in KAERI to find out their mechanical/structural performance.
-
The purpose of installation of the brine heating system for LNG storage tank is the prevention of ground freezing. If the ground of LNG tank areas is frozen, it is caused by safety problems. The design of brine heating system for LNG storage tank which is constructing in our country is not well considered about domestic weather conditions and economical efficiency. Therefore, this paper reports on the study of the optimized temperature of inside pipes and cooling process through the transient analysis by using the existing brine heating system.
-
In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.
-
Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model of a piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate the effective properties of fiber composites are extended to apply to the PFPMIDE model. The new model is validated comparing with available experimental data and other analytical results.
-
In order to improve automobile maneuverability and tire durability, it is very important for one to determine a suitable sidewall contour producing the ideal tension and strain-energy distributions. In order to determine such a sidewall contour, one must apply multi-objective optimization technique. The optimization problem of tire carcass contour involves several objective functions. Hence, we execute the tire contour optimization for improving the maneuverability and the tire durability using satisficing trade-off method. And, the tire optimization also requires long cup time for the sensitivity analysis. In order to resolve this numerical difficulty, we apply neural network algorithm.
-
The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elasticplastic fracture are investigated. Numerical examples are presented for illustration.
-
To restrain contact failure, present study investigates the influence of edge machining of an indenter (punch). As for the edge machining, rounding, chamfering, and chamfering and rounding are considered. Contact mechanics is consulted to examine the traction profile and the size of the contact region which are directly influenced by the end profile of the indenter. The effect of rounding size (i.e., radius) in the case of the chamfering and rounding edge-indenter is studied. Shear traction is also evaluated within the regime of partial slip. Size of slip region and its expansion rate due to the increase of shear force are considered to investigate the shape effect of the indenter on contact failure.
-
Development of adiabatic shear bands in thermoviscoplastic materials is analyzed via high resolution scheme. Presented here are our initial results, which are for one dimensional elasto-viscoplastic materials. As the mesh-sizes are getting small, the convergence result of plastic strain rate is obtained using elasto-viscoplastic materials. The further study cases will be reported at the presentation in the framework of the one and the two dimensional shearbanding, respectively. They will be compared with finite element solutions, and the advantage of the scheme will be discussed.
-
Nozzle of the double-plated grid plays the role of the spring to support a fuel rod as well as to provide the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study the contact analysis between the fuel rod and the nozzle type spacer grid was performed by using ABAQUS standard to propose the preferable shape in tenn of spring performance. Two small cuts at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement.
-
The expandable implant employs an inner expansion screw in order to expand several legs of implant. Compressive stresses are produced at the bone tissue surrounding the implant, and the contact area between the implant and the bone tissue is increased, which result in increased resistance to horizontal and vertical pressure loads. The stress distribution in implant is also an important factor. Three types of implant models including an existing one have been investigated by using the Finite Element Method, and an improved design model has been suggested.
-
The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is corrected using the neural network. The neural network has trained training examples of normalized eccentricity, eccentric direction and direction of maximum stress at eccentric case using backpropagation learning process. The trained neural network could corrected the error of measured residual stress in experiments with hole eccentricity. The proposed neural network is very useful for correction of the error due to hole eccentricity in hole-drilling method.
-
The purpose of this study is comparing cold expansion method with interference fit. Cold expansion method and interference fit of fastener hole is using in the aerospace industry. These treatment lead to an improvement of fatigue life to the compressive residual stresses developed on the hole surface. But Research is nothing to about difference effect of between cold expansion method and interference fit. So In this paper, It is shown that Comparing cold expansion method with interference fit. and It is further shown that residual stress distribution according to plate thickness.
-
The mechanical behavior of two rectangular plates spot-welded under bending is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this investigation are compared from detailed finite element analysis and experiments of the plates spot-welded for various parameters, such as aspect ratio, area ratio, and distance ratio of spot-welding points. The study is carried out using the equivalent thickness of the reinforced plates spot-welded.
-
A finite analysis of tractor cabin for ROPS design was performed. Finite element model was made to take account of the tractor cabin structures. Four tests were defined in OECD standard; (1) longitudinal loading (2) rear crushing test (3) side loading (4) front crushing test. The results of four independent analyses and sequential analysis are compared with test results.
-
This paper describes the construction of a circular polariscope. Generally, a circular polariscope contains four optical elements and a light source. The first element following the light source is called the polarizer. It converts the ordinary light into plane-polarized light. The second element is a quarter wave plate which converts the plane-polarized light into circularly polarized light. Following the quarter wave plate, a specimen made of transparent photoelastic material is located in a loading device. The second quarter wave plate is set and the last element is the analyzer. These polarizing elements, two quarter wave plates and two polarizing filters, were purchased from the USA. Frames and other structures for holding polarizing filters were machined and assembled to be rotated. Light box, which include four incandescent lamps and two sodium-vapor lamps, was made. In order to proof the function of the newly built polariscope, Tardy compensation test was applied to a rectangular shaped specimen made of poly-carbonate material (PSM1). The error of the fringe constant, which was measured by the newly built polariscope, was within 4.4 percent compared to the standard value of this material. It is possible to make a good quality of polariscope if accurate polarizing filters will be used.
-
Finite Element Analysis of End-to-End Anastomosis of Coronary Artery with Elastic Surrounding TissueA finite element analysis of end-to-end artery/PTFE anastomosis has been presented in this study to evaluate the distribution of compliance in the vicinity of the anastomosis due to any mismatch in compliance characteristics. But, In these studies it was assumed that the artery and PTFE have the simple cylindrical shape representing the fatty tissue surrounding the coronary artery. And the fatty tissue was considered as the elastic surrounding materials in the finite element analysis. The simulation results were obtained as follows : 1. A fatty tissue was effect to reduce the compliance mismatch in the vicinity of a artery/PTFE anastomosis of different material because a hypercompliant zone become narrorw and a compliance discrepancy decrease between the artery and the PTFE about 70%. And radial direction displacement distribution with respect to distance in the vicinity of a artery/PTFE anastomosis was similiar. 2. The variation of PTFE thckness reduce the compliance mismatch in the vicinity of a artery/PTFE anastomosis about 25%.
-
Natural gas became one of the major sources of energy in Korea. As the consumption of natural gas increase, the more capacity of the LNG storage tanks is required. Recently, Korea Gas Corp.(KOGAS) has developed the technology of designing the LNG storage tanks. In this study, some of the finite element analysis has been made for designing of the roof structure of LNG storage tanks. The load case and safety code used in this study were followed by BS7777.
-
The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes which depend on the existence of the center nozzles. Six nozzle arrangements which are cross 4, 5, 8, 9, square 8 and circular 8 nozzles are used for the experiment. Those are arranged to see the effect of the center nozzle out of multi-nozzle. There are many parameters that affect flame stability in multi-nozzle flame such as nozzle separation distance, fuel flowrates and nozzle configuration, but the most important factor is the existence of nozzles in the center area from the nozzle arrangement. As the number of nozzle in the area is reduced, more air can be entrained into the center of flame base and then tag flame is formed. In the case of circular 8 nozzles, blowout flowrates are above 5.4 times compared with that of single equivalent area nozzle.
-
The main object of this study is to develop a reliable FEM simulation technique for the analysis of Steel D&I Can bodymaking process using ABAQUS software. The body making process includes drawing, redrawing, 3 step ironing, doming. The newly developed FEM code in this research is based on the previous research achievement of POSCO for the drawing, redrawing and ironing process. The analysis is performed using two dimensional axisymmetric elements to analyze the punch force, the height of can, the distribution of residual stress and strain. The effect of blank thickness, gap of ironing die is also analyzed.
-
In this study, the seismic analysis of rack structure with fluid-structure interaction is performed through use of the Finite Element Method(FEM) code ANSYS. Fluid-structure interaction can specify in terms of an hydrodynamic effect which is defined as the added mass per unit length divided by the area of the cross section. Using the Floor Response Spectrum(FRS) obtained through the time-history analysis, modal analysis and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) condition is carried out. The fluid-structure interaction effects on the rack structure are investigated.
-
The main object of this study is to develop a reliable FEM simulation technique for stability test using ABAQUS software and to clarify the effect of base profile of a steel D&I(drawn and ironed) can on the dome reversal pressure. For the can after body making simulation, two kind of stability test, dome buckle test and axial crush test are performed. The factors studied in the base profile on the dome reversal pressure are the base diameter, the rim radius, the dome shoulder radius, the dome radius and the dome depth. Within the limits before the occurrence of normal snap-through buckling of dome, the dome reversal pressure is improved by decreasing the base diameter, increasing the dome depth or increasing the dome shoulder depth.
-
To realize higher track density of HDD, the servo bandwidth should be higher, however, is limited by the mechanical resonances of the arm, coil of the VCM and ball bearing pivot. The dual-stage actuator systems have been suggested as a possible solution. For the dual-stage actuator systems based on the suspension, the suspension resonance frequencies in the radial access direction are important factors to increase a servo bandwidth, however the improvement of these frequencies may affect the shock resistance performance and spring constant. The slider's flying stability can be deteriorated by the change of a vertical stiffness. In this work, we have investigated a suspension design scheme possessing a milliactuator for dual-stage actuator systems and also achieved higher mechanical characteristics. Design parameters are deduced by finite element analysis with sensitivity function. It is confirmed that the proposed suspension with the milliactuator has the capability of fine tracking motion, due to its hinge structure on the spring region, and achieves higher mechanical resonance frequencies in the radial access direction with a high-shock resistance and a low-spring constant.
-
As the technique of automobile industry is being advanced, the advancement of vehicle ride is being required. In order to achieve this purpose, the study on the vibration which are produced by moving vehicle is carried out actively. In this study, the tire vibration characteristics for passing over a cleat are analyzed. The model is verified against simulations and experiments. The tire is modeled with 7-DOFs (degree of freedom), and the effects of changing tire design parameters are considered. According to the results of analysis, the design parameters that reduce the tire and wheel vibration energy are conducted.
-
This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.
-
Because of resonance between natural frequency of the second floor base for IPB(Isolated Phase Bus) duct supports in a power plant and operation frequency of the turbine, there was high amplitude vibration on IPB duct. To reduce vibration of IPB duct, Firstly it was set a FEM model to seek the mode shape for the concrete structure. Secondly, it was carried out dynamic analysis for the FEM model. Lastly, because the natural frequency of the concrete structure could not be changed, it was changed supports position for the IPB duct near to beams. It resulted in reducing vibration of IPB duct.
-
In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. In this study, the authors estimate computational errors in the process of applying the existing linearized equation stated above. For evaluating the computational accuracy in practical applications of the linearized equations, dynamic behaviors of hydraulic control systems are investigated through simulations with several kinds of representative hydraulic systems and the linearized equations suggested in this study.
-
Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.
-
Due to the high power to weight ratio and fast response under heavy load, the hydraulic systems are still applied to the development of many industrial facilities such as heavy duty construction vehicles, aerospace/military weapon actuating systems and motion simulators. Unlike the other actuators, single-rod hydraulic cylinder exhibits a lot different dynamic characteristics between the extending and retracting stroke because of the difference in pressure acting areas. In this research, in order to overcome this nonlinear feature,
$H_{\infty}$ optimal controller was designed and implemented with DSP board that was specifically developed for the experiment. From the experimental result, we could confirm that the overall performance of single-rod hydraulic servo system is similar with the results as we expected in the design stage. -
This research develops a low-cost and high accurate kinematic calibration method for a parallel typed machining center tool. A planar table is used for a mechanical fixture restricting the platform to place at the constrained pose and a low-cost and high accurate digital indicator is employed for a device checking if the constrained movement is satisfied within the established range. The kinematic parameters calibrated with respect to a single plane aren't influenced from the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that the kinematic parameters is estimated by minimizing the cost function.
-
In this paper, we will propose the new method that estimates the sensing ability of HH smart sensor. We have developed a new signal processing method that can distinguish among different materials relatively. The HH smart sensor was developed for recognition of materials. We made the HH smart sensor in our experiment. Then, we estimated the ability to recognize objects according to acceleration value. We estimated the sensing ability of HH smart sensor with the
$R_{SAI}$ method. Experiments and analysis were executed to estimate the ability to recognize objects according to acceleration value changing. Dynamic characteristics of HH smart sensor were evaluated relatively through a new$R_{SAI}$ method that uses the power spectrum density. Applications of this method are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc. -
This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.
-
Almost all rotating machinery has bearings. Bearing is one of the most important part of rotating machinery. Vibration of rotating machinery depend on its bearing conditions. Bearing conditions are followings ; oil gap, bearing type, bearing temperature, bearing oil condition. Especially, bearing oil condition influences on rotating machinery vibration directly. In this paper we have discussed the abnormal vibration of turbine due to oil condition. oil whip problem was occured in the certain power plant. and we had sloved this problem through the control of operating values and alignment.
-
The effect of power supply voltage on the performance limits in a laboratory Magneto-rheological fluid based device was identified by experiments. It suggests that the frequency range of motion for control be limited by the voltage attenuation due to the coil inductance and the maximum power supply voltage set for practical use of MRF devices. In this work, the magnetic and electrical characteristics of MRF device are investigated and a design procedure is formulated to achieve the desired performance for a given power supply.
-
This paper presents a nonlinear modeling method for dynamic analysis of flexible structures undergoing overall motions that employs the mode approximation method. This method, different from the naive nonlinear method that approximates only Cartesian deformation variables, approximates not only deformation variables but also strain variables. Geometric constraint relations between the strain variables and the deformation variables are introduced and incorporated into the formulation. Two numerical examples are solved and the reliability and the accuracy of the proposed formulation are examined through the numerical study.
-
In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two rectangular identical plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid were assumed. An experimental modal analysis in order to extract the modal parameters of the system was performed. Finite element analysis was performed using ANSYS to verify modal parameters and analytic results were compared with experimental results. As a result, comparison of experiment and FEM showed good agreement and the transverse vibration modes, in-phase and out of-phase, were observed alternately in the fluid-coupled system. The effect of distance between two rectangular plates on the fluid-coupled natural frequency was investigated.
-
The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility, a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements with a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.
-
An industrial vibratory conveyor system is devised for large-scale feeding by the low-power, using natural frequency of the system. The important thing in this system is to determine the natural frequency and to drive by it. The purpose of this study is to build up reliance on the system with changing of element parameters for vibration characteristics of balancing type vibratory conveyor by using F.E.M. modeling. For investigating the natural frequency, modal testing is performed by using impact hammer, accelerometer and LMS/Vibration Analysis System. Experimental results are compared with F.E.M results. The results of the comparisons within the errors of less than 2 percent can verify the reliability of the F.E.M. analysis of the system. Also we can verify that the characteristics of natural frequency have linearly decreased(-6%) as adding the mass(
$50{\sim}600kg$ ). We can find that controlling driving frequency is necessary for triggering the natural frequency, but natural frequency is less affected by adding the mass on the balancing weight. -
This paper presents a method for calculating contact force of any shaped rigid bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration and contact force. This paper is using the continuous analysis method to calculate contact force. To get the accurate expected contact point on their outlines, a new algorithm is developed. Through the comparison with DADS, the accuracy of the proposed algorithm is proved.
-
Cause of noise/vibration for the sheet feeding apparatus of digital MFP is investigated by analyzing the measured sound pressure and the strategy for reducing the noise level is suggested. Factors related to the noise/vibration are found by loading test and the measurement of the noise by assembling the components. By checking the center distance between gears and the boss height, precision of assembly is identified as a main factor of noise. From the result of analysis, it can be concluded that the noise level of sheet feeding apparatus can be reduced by maintaining the distance between gears and the precision of assembly adequately.
-
The latch needle cam system of circular knitting machines is analysed using multibody dynamics. A formulation is made to obtain the vertical stiffness between the needle and the cam. By implementing this formulation into data of the multibody dynamics program, the motion and the force between the needle and the cam are obtained.
-
We must maintain the maximum operation capacity for production facilities and find properly out the fault diagnosis of the possessing equipments rapidly so as to decrease a loss caused by its failure. In this paper, we performed the fundamental study which develops a system of fault for a individually using pump widely or a pump as parts of the other machines. For each normal products, artificially transformed products, and working products under critical condition, we experimented in vibration, compared and analysed. Some faults showed into characteristic vibrations and other faults did not show consistent characters.
-
Structures in current use are required of weight reduction and strength in many instances. This naturally necessitates frequent applications of composite materials in many areas. Elastic constants are one of key parameters in determining design guidelines for the specific applications of particular materials. In this research two vibratory techniques (acoustic resonance method and impulse technique)are utilized to evaluate elastic constants. Both techniques are suitable for the measurements of dynamic elastic constants. The Impulse technique provides a quick method for the measurement while the acoustic resonance method produces the values of elastic constants which agree better with theoretical values.
-
A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.
-
A turbo-fan is easily exposed to noise and vibration as against other industrial machines and the majority of them is subject to be damaged by vibration. The most usual problem of vibration in a turbo-fan is resonance so the case of being composed of iron sheet structure with low strength like a turbo-fan should be taken seriously. In this paper, FFT(Fast Fourier Transform) and Order tracking method were used to analyze factors of vibration in a turbo-fan and hereby with proper selection of vibration isolator, we wanted to reduce vibration of base. After Order tracking, we knew resonance occurred in rotational frequency 23 Hz(1400 rpm) at the casing and the bearing. After the test of base vibration using vibration isolators, the spring isolator was more effective than the robber isolator in the base vibration and the vibration isolating is more effective in the case that the isolating pad is adhered to the bottom of the isolating spring.
-
In this paper, we analyzed the laminated composite sandwich plate structure of honeycomb core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. The laminated angle has the maximum value when the plate of honeycomb core is join to opposite direction. This paper shows that the natural frequency of CFRP is higher than that of GFRP, and also impact strength marks maximum value in case of antisymmetry than symmetry of core. Also it shows that the mode shapes are various along with the angle-ply of laminated composite plate.
-
The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.
-
The construction of the elevated railway has led to concerns about the noise from trains, particularly as tracks often pass close to residential dwellings. One specific issue relates to the noise from trains on bridges. The wayside noise for the train was measured to get the basic data that can be used to prepare count measures for solving environmental noise problems. Noise levels were measured simultaneously at three points in various distances from the railroad and at four points classified by floor. In this paper we measure the wayside noise in elevated railway and noise of normal operation compare with operating under train engine idling condition and investigate effect of nearby-building induced by train operation.
-
This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form from the dynamic stiffness equation of motion for a structure and then applied to a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions experimentally measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses and then experimental verification is conducted for a cantilevered beam with damage caused by introducing three slots.
-
Storage drives for mobile devices, such as laptop computers or PDAs, are changing now. The data density of storage drives is becoming higher and sizes of those are becoming smaller and thinner. Spindle motors for rotating disk are also becoming smaller and thinner. But, large torque is required to reduce seek time. In this research, inner rotor type spindle motor suitable for thin thickness has been developed. Rotor and stator are optimized structurally for large torque performance with small size. Especially, high vibration and shock performances, which are essential to mobile devices, are analyzed in detail.
-
LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.
-
In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research, the Stewart platform based motion simulator has been developed. This motion simulator is driven by the electric motors, and offers the slightly wider workspace compared to the commercial available simulators. In order to compensate for the limited range of the motion platform, the washout filters with fixed coefficients have been usually adopted. In this paper the new approach is proposed to tune the filter coefficients based on the fuzzy logic on the real-time basis. It is shown that performance with the variable filter coefficients is better than that with the fixed ones. The driving simulator based on the bicycle dynamics was developed by integrating the motion simulator and graphic system.
-
The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage
$(1\sim3\;V)$ to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system. -
An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.
-
This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust
$H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain. -
In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.
-
In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.
-
A precise tracking control scheme on the system in presence of nonlinear dynamic friction is proposed. In this control scheme, the standard SMC is combined with the nonlinear observer to estimate the dynamic friction state that is impossible to measure. Then this control scheme has the good tracking performance and the robustness to parameter variation compared with the standard SMC and the PiD based nonlinear observer control system. This fact is proved by the experiment on the ball-screw driven servo system with the dynamic friction model.
-
This paper presents a combinatorial method to compute the solutions of optimization problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The hybrid algorithm is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. And the enhanced artificial life algorithm is applied to optimum design of high-speed, short journal bearings and the usefuless is verified through this example.
-
In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.
-
This research is presented for optimizing the coefficients of spring and damper by impact load which is applied to a trailer when the containers are loaded up trailer. The procedure utilize the condition that two containers, initial velocity of container, initial height of container and maximum of suspension stroke. The coefficients of spring and damper are calculated numerically through Newmark method uses finite difference expansions. The procedure of calculation is applied by one DOFs of mass-spring-damper system. The coefficients of spring and damper have large value as increase of height or decrease of stroke. The result of calculation is investigated and is used AGV design.
-
In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.
-
Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.
-
A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.
-
In this paper, we develop a six-axes machining center tool(MCT) and CAD/CAM system. The MCT consists of two mechanical parts, i.e., a X-Y-Z Cartesian coordinate typed MCT and a parallel-typed tilting table. Kinematics and singularity are accomplished to design the parallel-typed tilting table, and CAD/CAM system is developed for the six-axes MCT, which requires the commands of position as well as orientation for machining of complex shape. The CAD/CAM system has a tool path generator, a NC code generator and a graphic simulator. This paper designs the parallel-typed tilting table to meet the desired specification and presents the results of tool path, NC code and graphic simulation.
-
There are two kinds of method to calculate the equivalent friction coefficients at V groove. One is to consider the firction in radial direction. The other is to neglect the friection in radial direction. The values calculated from the two methods is different of which ratio is in the range from two times to five times. So it is necessary to study which is correct in the view of force equilibrium and machine design.
-
Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.
-
The purpose of this study is to suggest the machining technique of the constant control of cutting speed in order to improve precision machining and tool life in high speed machining using ball end mill. Cutting speed is changed in machining free form surface like free form surface. So, we don't have supreme surface form and toll life on machining. The way to solving this problem is that we should be settled to optimal cutting speed in free form surface machining. And, to improve precision machining is executed high speed machining method to output optimum NC data with developed constant control of cutting speed program after modeling of CAD/CAM. In this paper, a comparison was made of the cutting precision and tool life in conventional cutting and those in free form surface machining applying the program developed.
-
A new rapid prototyping process, as a transfer type of Variable Lamination Manufacturing by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost including the introduction and the maintenance and additional post-processing. The objective of this study is to propose a VLM-ST process and to develop an apparatus for implementation of the process. Design criteria of the apparatus were defined and the techniques were proposed to satisfy the design criterion. In order to examine the efficiency and applicability of the developed process, various three-dimensional shapes, such as a world-cup logo, a knob shape and a character, Son-o-kong, were fabricated on the apparatus in which unit shape layer (USL) was generated to build up each layer.
-
Gas-assisted injection molding is an innovative low-pressure injection molding technique that can provide numerous benefits such as reduced part warpage, excellent surface quality without sink marks, low injection pressure, and greater design flexibility. However, the adoption of gas-assisted injection molding may cause unexpected defects if the gas channel design is not conducted properly. The objective of this paper is to broaden the understanding of gas-assisted injection molding by summarizing the design procedures and experimental results of the gas-assisted injection molding of a 17" flat monitor front cover. The gas channels were designed by using Moldflow(MF/GAS) simulations and a 450 ton injection molding machine with a 5 stage pressure control gas kit was used in the experiments.
-
The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.
-
Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed.
-
Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.
-
Welding using lasers can be mass-produced in high speed. In the laser welding, performing real-time evaluation of the welding quality is very important in enhancing the efficiency of welding. In this study, the plasma and molten metal which are generated during laser welding were measured using the UV sensor and IR sensor. The results of laser welding were classified into five categories such as optimal heat input, little low heat input, low heat input, focus off, and nozzle change. Also, a system was formulated which uses the measured signals with a fuzzy pattern recognition method which is used to perform real-time evaluation of the welding quality and the defects which can occur in laser welding. Weld quality prediction program was developed using previous weld results and statistical program which could show the trend of weld quality and signal was developed.
-
The on-line cure monitoring of fiber reinforced thermosetting resin matrix composite material was performed for the better quality and productivity during manufacturing. Since the dissipation factor measured by dielectrometry method is dependent on the degree of cure and temperature of resin, in this study, a new method to obtain the degree of cure during on-line cure monitoring for glass/polyester composites was developed by employing a combination function of the temperature and the dissipation factor. Two sensor signals from a K-type thermocouple and an interdigitated dielectric sensor were processed during curing process under various cure cycles. The DSC (Differential Scanning Calorimetry) data was also used for the reference of degree of cure.
-
Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.
-
power transfer breaker is a device used to transfer the load from the electricity power line to the emergency generators. In case of overload, it also functions as a circuit breaker. In this work, a new mechanism for the device is suggested. Among the various design challenges, optimization of the trigger mechanism is identified as of central importance. Optimal design decisions are made with the use of Taguchi method.
-
According as industry is complex, architecture is changing into the complex and diverse style and also customer's demands are becoming diversified. Among these, a door field is very important as much as saying nothing of more explanation. In this paper, in order to develop large floor hinge, mechanical properties of component parts are measured by vickers hardness tester, microstructure analysis and at the same time, these are designed by the FEM analysis.
-
Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. Accordingly, this paper deals with Basic system and Online system. Basic system comprised of spindle rotational speed, feed rates, thrust, torque and flank wear measured tool microscope. Online system comprised of spindle rotational speed, feed rates, AE signal, flank wear area measured computer vision. On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.
-
This study is an introduction of ADS in which we have written out programs which can design three-dimensional machine parts and reduce the required time for design them comparing with other CADs. Among the machine parts, screws are commonly used in joining one part to another because of easy handing but welding and rivet are used to join permanently them even thought hard operation. Consequently, we have developed the screw for permanent fixing using stairs type screw threads, which is considered as the main machine parts in joining. For that, we designed permanent fastened screws according to the different rotation angle using VisualLISP and transferred it to ANSYS, structural solution program, to find out allowance load, maximum equivalent stress and where it occur.
-
Gear is general mechanical elements that used for power transmission between two shafts that interval is comparatively short. and it delivers big power as accurate ratio of speed. The profile of Spur gear which is the most basic factor is divided into Trochoidal fillet curve and Involute curve. Involute curve is used a lot of a shaped curve of machine parts such as a gear, a scroll compressor and a collar of centrifugal pump. However, It is poor to study the modeling of Trochoidal fillet curve and the three dimensions model shaped mathematical curve. This paper describes a mathematical model of profile shifted involute gear. and this model is based on Camus's theory. We draw three dimensions gear have accurate mathematical function using ADS, VisualLISP. and To check accuracy and perfection, we make a program of checking Interference. and use for this study.
-
This study is on the precision of the optical scanner which is suitable for shape modeling and non-contact equipment, comparing with a razer scanner. The optical scanner not only has all merits that non-contact methods have but also improve a veil phenomenon which is a razer scanner's demerits. However, the optical scanner has not been used extensively because the measurements are not very precise and there are not the definite methods of measurement. Hence, this study is to find out how parameters such as camera's hight, angle, luminous intensity, distance to object, and so on have an influence on measuring using the optical scanner and to establish the methods of measuring precision.
-
A new approach to the design of bank note counters is suggested. Modern bank note counters are equipped with several types of sensors for counting and detection of counterfeit bank notes. To achieve higher speed of counting while maintaining the sensing capability, longitudinal feeding scheme is proposed. Several merits of longitudinal feeding are discussed. Taguchi method is used for the optimization of the feeding mechanism.
-
Generally, mixed materials of LDPE, EVA and foaming agent are manufactured by crosslinking foaming or chemical foaming process. Above materials were used in a microcellular foaming injection molding process. Influence of each factor such as injection type, temperature of barrel, rate of mixed materials and contents of foaming agent was estimated by DOE(Design of Experiments). As a result of experiments, injection type and rate of LDPE, EVA have an influence on foaming rate. This data can be used in field of application of LDPE and EVA.
-
In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.
-
For pneumatic system control, we need a data transmission system with high speed and high reliability or information interchange between main computer and solenoid valves and I/O devices. This paper presents a set of design techniques for a data communication system that is mainly used for pneumatic system control. For this purpose, we first designed hardware modules for an interface between central control module and local node that handles the operation of solenoid valves. In addition we developed a communication protocol for construction of RS-485 based multidrop network, and this protocol is basically designed with a kind of polling technique. Finally we evaluated performance of the developed system. The field test results show that, even under high noise environment, the data transmission of 375Kbps rate is possible up to 1,000m without using repeater. In addition, the system developed in this research is proved to be used easily for extension of a communication network because of its module structure.
-
Laser photolithography technique is useful for fabricating micro-patterns of silicon wafers. In this work, the laser photolithography micromachining technique is optimized based on Taguchi method. Sensitivity analysis was performed using laser scanning speed and laser power level as the parameters. The results show that for the photoresist used in this work, a laser scan speed of
$70{\mu}m/s$ at 50mW laser power gives the best result. -
Effects of Temperature and Humidity on the Friction and Wear Properties of DLC Film on the Hard DiskDLC(Diamond-like carbon) films possess high hardness, low friction coefficient, and good wear resistance. Due to these properties, DLC films have been used extensively in magnetic hard disk industry. The objective of the present study was to investigate the influence of environmental condition on the tribological behavior of DLC coated hard disk. It is found that the tribological characteristics of DLC films are strongly affected by relative humidity and temperature. Specifically, the friction coefficient increases with increase in temperature at relative humidity of 50%. However, at 20% and 85% RH the effect of temperature was not significant. Also, the degree of wear could be observed using an AFM.