DOI QR코드

DOI QR Code

Comprehensive genome-wide analysis of genetic loci and candidate genes associated with litter traits in purebred Berkshire pigs of Korea

  • Jun Park (Department of Animal Biotechnology, Jeonbuk National University)
  • Received : 2024.01.25
  • Accepted : 2024.05.20
  • Published : 2024.10.01

Abstract

Objective: The objective of this study was to identify genomic regions and candidate genes associated with the total number of piglets born (TNB), number of piglets born alive (NBA), and total number of stillbirths (TNS) in Berkshire pigs. Methods: This study used a total of 11,228 records and 2,843 single-nucleotide polymorphism (SNP) data obtained from Illumina porcine 60 K and 80 K chips. The estimated genomic breeding values (GEBVs) and SNP effects were estimated using weighted single-step genomic BLUP (WssGBLUP). Results: The heritabilities of the TNB, NBA, and TNS were determined using single-step genomic best linear unbiased prediction (ssGBLUP). The heritability estimates were 0.13, 0.12, and 0.015 for TNB, NBA, and TNS, respectively. When comparing the accuracy of breeding value estimates, the results using pedigree-based BLUP (PBLUP) were 0.58, 0.60, and 0.31 for TNB, NBA, and TNS, respectively. In contrast, the accuracy increased to 0.67, 0.66, and 0.42 for TNB, NBA, and TNS, respectively, when using WssGBLUP, specifically in the last three iterations. The results of weighted single-step genome-wide association studies (WssGWAS) showed that the highest variance explained for each trait was predominantly located in the Sus scrofa chromosome 5 (SSC5) region. Specifically, the variance exceeded 4% for TNB, 3% for NBA, and 6% for TNS. Within the SSC5 region (12.26 to 12.76 Mb), which exhibited the highest variance for TNB, 20 SNPs were identified, and five candidate genes were identified: TIMP3, SYN3, FBXO7, BPIFC, and RTCB. Conclusion: The identified SNP markers for TNB, NBA, and TNS were expected to provide valuable information for genetic improvement as an understanding of their expression and genetic architecture in Berkshire pigs. With the accumulation of more phenotype and SNP data in the future, it is anticipated that more effective SNP markers will be identified.

Keywords

References

  1. Zhang Z, Chen Z, Ye S, et al. Genome-wide association study for reproductive traits in a duroc pig population. Animals (Basel) 2019;9:732. https://doi.org/10.3390/ani9100732 
  2. Wood JD, Nute GR, Richardson RI, et al. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci 2004;67:651-67. https://doi.org/10.1016/j.meatsci.2004.01.007 
  3. Suzuki K, Shibata T, Kadowaki H, Abe H, Toyoshima T. Meat quality comparison of Berkshire, Duroc and crossbred pigs sired by Berkshire and Duroc. Meat Sci 2003;64:35-42. https://doi.org/10.1016/s0309-1740(02)00134-1 
  4. Luo J, Yang Y, Liao K, et al. Genetic parameter estimation for reproductive traits in QingYu pigs and comparison of carcass and meat quality traits to Berkshire× QingYu crossbred pigs. Asian-Australas J Anim Sci 2020;33:1224-32. https://doi.org/10.5713/ajas.19.0105 
  5. Dashmaa D, Cho BW, Odkhuu G, et al. Meat quality and volatile flavor traits of Duroc, Berkshire and Yorksire breeds. Korean J Food Sci Anim Resour 2011;31:807-16. https://doi.org/10.5851/kosfa.2011.31.6.807
  6. Kasprzyk A, Tyra M, Babicz M. Fatty acid profile of pork from a local and a commercial breed. Arch Anim Breed 2015;58:379-85. https://doi.org/10.5194/aab-58-379-2015 
  7. Nowak B, Mucha A, Moska M, Kruszynski W. Reproduction indicators related to litter size and reproduction cycle length among sows of breeds considered maternal and paternal components kept on medium-size farms. Animals (Basel) 2020;10:1164. https://doi.org/10.3390/ani10071164 
  8. Ruan D, Zhuang Z, Ding R, et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes (Basel) 2021;12:117. https://doi.org/10.3390/genes12010117 
  9. Verardo LL, Silva FF, Varona L, et al. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. J Appl Genet 2015;56:123-32. https://doi.org/10.1007/s13353-014-0240-y
  10. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res (Camb) 2012;94:73-83. https://doi.org/10.1017/S0016672312000274 
  11. Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 2009;41:55. https://doi.org/10.1186/1297-9686-41-55 
  12. Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front Genet 2016;7:151. https://doi.org/10.3389/fgene.2016.00151 
  13. Luo H, Hu L, Brito LF, et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol 2022;13:108. https://doi.org/10.1186/s40104-022-00748-6 
  14. Park J, Lee SM, Park JY, Na CS. A genome-wide association study (GWAS) for pH value in the meat of Berkshire pigs. J Anim Sci Technol 2021;63:25-35. https://doi.org/10.5187/jast.2021.e17 
  15. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795 
  16. Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90-POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production (WCGALP); 2014 Agust 17-22: Vancouver, Canada. Champaign, IL, USA: American Society of Animal Science; 2014. 
  17. Delaneau O, Zagury JF, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable and integrative haplotype estimation. Nat Commun 2019;10:5436. https://doi.org/10.1038/s41467-019-13225-y 
  18. Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the positional burrows wheeler transform. PLoS Genet 2020;16:e1009049. https://doi.org/10.1371/journal.pgen.1009049 
  19. Aguilar I, Misztal I, Legarra A, Tsuruta S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J Anim Breed Genet 2011;128:422-8. https://doi.org/10.1111/j.1439-0388.2010.00912.x 
  20. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980 
  21. Legarra A, Robert-Granié C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics 2008;180:611-8. https://doi.org/10.1534/genetics.108.088575 
  22. Wang H, Misztal I, Aguilar I, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet 2014;5:134. https://doi.org/10.3389/fgene.2014.00134 
  23. R Core Team R. R: a language and environment for statistical computing. Vienna, Austria: R Foundationfor Statistical Computing; 2013. 
  24. Yin L. CMplot: circle manhattan plot. R package version 2020; 3.2:699. 
  25. Misztal I, Tsuruta S, Lourenco D, Augilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs. Athens, GA, USA: University of Georgia; 2014. 199 p. 
  26. Irano N, de Camargo GM, Costa RB, et al. Genome-wide association Study for indicator traits of sexual precocity in nellore cattle. PLoS ONE 2016;11:e0159502. https://doi.org/10.1371/journal.pone.0159502 
  27. Gonzalez-Pena D, Gao G, Baranski M, et al. Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss). Front Genet 2016;7:203. https://doi.org/10.3389/fgene.2016.00203 
  28. Sollero BP, Junqueira VS, Gomes CCG, Caetano AR, Cardoso FF. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet Sel Evol 2017;49:49. https://doi.org/10.1186/s12711-017-0325-2 
  29. Schurink A, Wolc A, Ducro BJ, et al. Genome-wide association study of insect bite hypersensitivity in two horse populations in the Netherlands. Genet Sel Evol 2012;44:31. https://doi.org/10.1186/1297-9686-44-31 
  30. Marques DBD, Bastiaansen JWM, Broekhuijse M, et al. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet Sel Evol 2018;50:40. https://doi.org/10.1186/s12711-018-0412-z 
  31. Fan D, Kassiri Z. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology. Front Physiol 2020;11:661. https://doi.org/10.3389/fphys.2020.00661 
  32. Grzesiak M, Kaminska K, Knapczyk-Stwora K, Hrabia A. The expression and localization of selected matrix metalloproteinases (MMP-2, -7 and -9) and their tissue inhibitors (TIMP-2 and -3) in follicular cysts of sows. Theriogenology 2022;185:109-20. https://doi.org/10.1016/j.theriogenology.2022.03.029 
  33. van Son M, Tremoen NH, Gaustad AH, et al. RNA sequencing reveals candidate genes and polymorphisms related to sperm DNA integrity in testis tissue from boars. BMC Vet Res 2017;13:362. https://doi.org/10.1186/s12917-017-1279-x 
  34. Feldman RMR, Correll CC, Kaplan KB, Deshaies RJ. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 1997;91:221-30. https://doi.org/10.1016/s0092-8674(00)80404-3 
  35. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997;91:209-19. https://doi.org/10.1016/s0092-8674(00)80403-1 
  36. Laman H, Funes JM, Ye H, et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. Embo J 2005;24:3104-16. https://doi.org/10.1038/sj.emboj.7600775 
  37. Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 2003;160:529-39. https://doi.org/10.1083/jcb.200210095 
  38. Webb GC, Akbar MS, Zhao C, Steiner DF. Expression profiling of pancreatic beta cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci USA 2000;97:5773-8. https://doi.org/10.1073/pnas.100126597 
  39. Li X, Itani OA, Haataja L, et al. Requirement for translocon-associated protein (TRAP) alpha in insulin biogenesis. Sci Adv 2019;5:eaax0292. https://doi.org/10.1126/sciadv.aax0292 
  40. Gonzalez-Calvo I, Iyer K, Carquin M, et al. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. Elife 2021;10:e65712. https://doi.org/10.7554/eLife.65712 
  41. Crespo-Piazuelo D, Migura-Garcia L, Estell J, et al. Association between the pig genome and its gut microbiota composition. Sci Rep 2019;9:8791. https://doi.org/10.1038/s41598-019-45066-6 
  42. Park J. Genome-wide association study to reveal new candidate genes using single-step approaches for productive traits of Yorkshire pig in Korea. Anim Biosci 2024;37:451-60. https://doi.org/10.5713/ab.23.0255 
  43. Sell-Kubiak E, Dobrzanski J, Derks MFL, Lopes MS, Szwaczkowski T. Meta-analysis of SNPs determining litter traits in pigs. Genes (Basel) 2022;13:1730. https://doi.org/10.3390/genes13101730 
  44. Yuan R, Zhang J, Wang Y, et al. Reorganization of chromatin architecture during prenatal development of porcine skeletal muscle. DNA Res 2021;28:dsab003. https://doi.org/10.1093/dnares/dsab003 
  45. Yoo I, Han J, Lee S, et al. Analysis of stage-specific expression of the toll-like receptor family in the porcine endometrium throughout the estrous cycle and pregnancy. Theriogenology 2019;125:173-83. https://doi.org/10.1016/j.theriogenology.2018.11.003 
  46. Bonnet A, Gress L, Bluy L, et al. Late fetal late development at the feto-maternal interface: contribution of the fetal genome. Journes Recherche Porcine 2020;52:409-10. 
  47. Zhang R, Zhang Y, Liu T, et al. Utilizing variants identified with multiple genome-wide association study methods optimizes genomic selection for growth traits in pigs. Animals (Basel) 2023;13:722. https://doi.org/10.3390/ani13040722 
  48. Zhang X, Zhang M, Li Y, Jiang Y. Comprehensive transcriptional analysis of early dorsal skin development in pigs. Gene 2024;899:148141. https://doi.org/10.1016/j.gene.2024.148141