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Comprehensive genome-wide analysis of genetic loci and 
candidate genes associated with litter traits in purebred  
Berkshire pigs of Korea

Jun Park1,2,*

Objective: The objective of this study was to identify genomic regions and candidate genes 
associated with the total number of piglets born (TNB), number of piglets born alive (NBA), 
and total number of stillbirths (TNS) in Berkshire pigs.
Methods: This study used a total of 11,228 records and 2,843 single-nucleotide polymorphism 
(SNP) data obtained from Illumina porcine 60 K and 80 K chips. The estimated genomic 
breeding values (GEBVs) and SNP effects were estimated using weighted single-step genomic 
BLUP (WssGBLUP).
Results: The heritabilities of the TNB, NBA, and TNS were determined using single-step 
genomic best linear unbiased prediction (ssGBLUP). The heritability estimates were 0.13, 
0.12, and 0.015 for TNB, NBA, and TNS, respectively. When comparing the accuracy of 
breeding value estimates, the results using pedigree-based BLUP (PBLUP) were 0.58, 0.60, 
and 0.31 for TNB, NBA, and TNS, respectively. In contrast, the accuracy increased to 0.67, 
0.66, and 0.42 for TNB, NBA, and TNS, respectively, when using WssGBLUP, specifically 
in the last three iterations. The results of weighted single-step genome-wide association 
studies (WssGWAS) showed that the highest variance explained for each trait was predo-
minantly located in the Sus scrofa chromosome 5 (SSC5) region. Specifically, the variance 
exceeded 4% for TNB, 3% for NBA, and 6% for TNS. Within the SSC5 region (12.26 to 
12.76 Mb), which exhibited the highest variance for TNB, 20 SNPs were identified, and 
five candidate genes were identified: TIMP3, SYN3, FBXO7, BPIFC, and RTCB.
Conclusion: The identified SNP markers for TNB, NBA, and TNS were expected to provide 
valuable information for genetic improvement as an understanding of their expression and 
genetic architecture in Berkshire pigs. With the accumulation of more phenotype and SNP 
data in the future, it is anticipated that more effective SNP markers will be identified.
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INTRODUCTION

Livestock reproductive traits are economically significant but predominantly sex-specific 
(such as sperm quality in males and fertility in females), and most involve complex genetic 
mechanisms with low heritability. Consequently, genetic improvement in these traits is 
particularly challenging compared with other economically relevant traits. Reproductive 
efficiency in sows has a substantial impact on the profitability of pig farming, which relies 
on factors such as litter size, gestation length, and farrowing intervals. These factors are 
significant in enhancing farm earnings, even with relatively low heritability. Notably, total 
piglets born, and live births play a critical role in evaluating reproductive efficiency and its 
influence on farm profits. However, pursuing larger litters may inadvertently increase piglet 
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mortality and reduce gestation periods, as suggested by ear-
lier studies. In addition, stillbirth rates may vary depending 
on the breed and breeding type. Enhancing litter size remains 
the primary breeding objective for many well-established 
breeding systems and organizations that have devoted de-
cades to rigorous selection and breeding efforts [1]. Although 
traditional breeding strategies have yielded genetic improve-
ments in these traits, the need for molecular breeding methods, 
such as genomic selection, has intensified to achieve faster 
rates of improvement.
 Globally, there are more than 1,000 pig breeds; however, 
since the late 20th century, a relatively small number of 
breeds have been used for commercial pig production be-
cause of intensive selective breeding and genetic improvement. 
This strategy has led to improved reproductive capabilities, 
growth rates, carcass yields, muscle growth, and intramus-
cular fat content. In Korea, the swine sector predominantly 
employs a three-breed cross (Yorkshire, Landrace, and Duroc) 
in a pyramidal breeding structure to produce commercial 
pigs. These crossbreeds, which are globally prevalent, have 
shifted toward specialized, high-quality pork for enhanced 
profitability. The Berkshire breed, known for its superior 
meat quality [2,3], has been considered for breeding to im-
prove meat characteristics [4]. Many previous studies have 
highlighted differences in fatty acid composition among pig 
breeds. Berkshires, for instance, have significantly higher 
saturated fatty acid and lower monounsaturated fatty acid 
content than Duroc and Landrace [5]. Differences in fatty 
acids, such as palmitoleic acid, oleic acid, linoleic acid, and 
linolenic acid, between Pulawska and Polish Landrace con-
tribute to the superior meat quality of native species [6]. 
Variations in meat quality characteristics and fatty acid com-
position are attributable to breed differences, which impact 
consumer-recognized meat attributes. However, Berkshires 
pose rearing challenges because of their smaller litters and 
lower piglet survival rates [7], making litter size enhancement 
crucial for leveraging their meat quality attributes.
 Genome-wide association studies (GWAS) have revolu-
tionized molecular breeding and genetics, particularly in 
identifying and analyzing economically important traits in 
livestock. These studies have led to the discovery of multiple 
candidate genes and significant genetic markers, often reveal-
ing complex interactions at the same genomic locus. Such 
complexities, inherent in quantitative trait studies influenced 
by multiple genes and environmental factors, present chal-
lenges in detecting quantitative trait loci (QTLs) and mapping 
accuracy [8]. The advent of high-density single-nucleotide 
polymorphism (SNP) panels has greatly improved the preci-
sion of QTL mapping and candidate gene identification. These 
methods provide more accurate analyses of trait heritability 
than conventional pedigree assessments [9]. In the realm of 
GWAS, the primary techniques used are single-SNP GWAS 

and the Bayesian approach. The single-SNP method treats 
each SNP as a distinct fixed effect, which acknowledges vari-
ations within population groups. Conversely, the Bayesian 
approach assesses all SNPs simultaneously [10]. However, in 
Korea, there is a substantial disparity between the availability 
of phenotype and genotype data, with far fewer animals having 
complete sets of both types of data. This data gap restricts 
the effective application of these methods, primarily because 
of the need to compute pseudo-phenotypes, such as dere-
gressed breeding values [11]. To address these challenges, a 
single-step GWAS (ssGWAS) was developed. This method 
leverages the genomic enhanced breeding values (GEBVs), 
calculated via single-step genomic best linear unbiased pre-
diction (ssGBLUP), to estimate the impacts on individual 
SNPs. Its premise of uniform variance across all markers, 
however, may limit its utility in traits significantly influenced 
by major QTLs. To circumvent these limitations, the weighted 
ssGWAS (WssGWAS) methodology was introduced. This 
advanced approach variably weights SNP effects according 
to their relevance to the trait under investigation, thus en-
hancing the accuracy of QTL identification. The WssGWAS 
integrates GEBVs derived from phenotypes, genotypes, and 
pedigree information, addressing unequal variances among 
SNPs, and promoting more precise SNP effect estimations 
[10,12]. This method proves especially advantageous for 
traits heavily affected by significant QTL effects, particularly 
in situations where phenotype and genotype data are scarce 
[13]. The implementation of WssGWAS begins with the 
calculation of the inverse of the realized relationship matrix 
(H–1), which incorporates all available pedigree and geno-
type information. This matrix is used within the ssGBLUP 
framework to compute GEBV for each animal, and these 
values are then used to assess the impact of individual SNP 
effects. Subsequently, these effects were analyzed to deter-
mine the proportion of genetic variance accounted for by 
sequential SNP groups or windows. Although WssGWAS 
does not directly extract SNP effects from the model and 
lacks mechanisms for evaluating statistical test uncertain-
ties, it provides critical insights into the most significant 
SNP windows based on explained genetic variance. This 
method is highly recognized in QTL detection research, 
despite not facilitating formal significance testing. Our 
study adopted the WssGWAS approach because it effec-
tively combines phenotypic, genotypic, and pedigree data, 
thus eliminating the need to generate pseudo-phenotypes 
for genotyped animals. This strategy not only assigns vari-
able weights to SNPs based on their significance but also 
surpasses the simplistic assumptions of the GBLUP infini-
tesimal model, thereby enhancing the precision of SNP 
effect estimations. Moreover, the methodology of assessing 
consecutive SNP windows due to linkage disequilibrium 
(LD) proves more effective in pinpointing QTL regions 
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than the analysis of individual SNPs. Overall, advancements 
in genomic analysis through WssGWAS have profoundly 
enriched our understanding of the genetic architecture of 
economically important traits in livestock, significantly in-
fluencing breeding strategies and enabling more informed 
selection and breeding decisions to optimize desirable traits 
in livestock populations.
 This study builds upon our establishment of a Berkshire 
breed lineage and initial research on meat quality genetic 
parameters [14]. We conducted a preliminary study on pH, 
a key meat quality trait, in the Berkshire breed. Beginning 
with an investigation of meat quality traits, we conducted 
this study to improve litter size in Berkshire pigs. We identified 
genetic regions and candidate genes linked to litter size in 
domestic Berkshire pigs using WssGWAS.

MATERIALS AND METHODS

Animals and phenotypes
Phenotypic data were sourced from D Farm, a commercial 
pig farm in Korea, which has been implementing a proprie-
tary breeding program since 2003, initially with pigs imported 
from the US. Presently, the farm exclusively uses its own 
breeding plan to produce purebred and candidate pigs, fore-
going the need for further imports. D Farm’s Berkshire pigs 
are recognized as a unique single breed both in Korea and 
internationally by the United Nations Food and Agriculture 
Organization (FAO) and the domestic animal diversity in-
formation system (DAD-IS). This study analyzed 11,228 
reproductive records, focusing on the total number of piglets 
born (TNB), number of piglets born alive (NBA), and total 
number of stillbirths (TNS) (Supplementary Table S1). TNB 
refers to the TNB per parturition, including stillbirths and 
mummies. NBA is the count of piglets, excluding mummies 
and stillbirths, from the total born. TNS represents the sum 
of mummies and stillbirths.

Single-nucleotide polymorphism data and quality 
control 
Genotypic data were gathered from 2,076 samples using 
the Illumina 60K beadchip and from 773 samples using the 
Illumina 80K beadchip. Quality control procedures were 
implemented via PLINK [15], with exclusions for SNPs with 
unknown positions, those on sex chromosomes, a call rate 
below 0.90, a minor allele frequency under 0.01, or a signifi-
cant departure from Hardy–Weinberg equilibrium (p<10–6). 
Parentage verification was performed using SEEKPARENTF90 
[16] with a 10% threshold for resolving paternity discrep-
ancies. After the reconciliation of genotyped animals and 
the alignment of genotypic identification with phenotypic 
and pedigree information, 2,843 animals were selected for 
the GWAS. The 60 K data were imputed to the 80 K stan-

dard using the latter as a reference, and phasing was performed 
using SHAPEIT4 [17], which is a fast and accurate method 
for haplotype estimation that uses a PBWT-based approach 
to select informative conditioning haplotypes. Imputation 
was then conducted using IMPUTE5 [18], which assumes 
phased samples with no missing alleles. The concluding 
dataset for the analysis contained 53,812 markers.

Statistical analyses
Genetic parameters for TNB, NBA, and TNS were estimated 
using the average information restricted maximum likelihood 
(AIREML) method. Two distinct approaches were utilized: 
pedigree-based BLUP (PBLUP) and ssGBLUP. This statisti-
cal model facilitates the partitioning of observed phenotypic 
variances into genetic and environmental components, thereby 
enabling the estimation of heritability and genetic correlations 
between traits. The PBLUP approach incorporates pedigree 
information to estimate genetic effects, whereas the ssGBLUP 
method integrates both pedigree and genomic information, 
potentially enhancing the precision of genetic parameter es-
timates. Each trait was analyzed using a single-trait animal 
model. The model equation is as follows (1):

 y = Xb+Za+Wpe+e 

 Where y is the vector of phenotypic observations; b is the 
vector of fixed effects (birth year-season and parity); a is the 
vector of additive genetic effects; pe is the vector of perma-
nent environmental effects; e is the vector of residuals; and X, 
Z, and W are the incidence matrices of b, a, and pe, respec-
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where Z is a matrix of gene content adjusted for allele fre-
quencies (0, 1, or 2 for AA, Aa, and aa, respectively), D is a 
diagonal matrix of weights for SNP variances (initially D = I), 
M is the number of SNPs, and pi is the minor allele frequency 
of ith SNP. Estimates of the SNP effects and weights for Wss-
GWAS were obtained according to the following steps [10]:
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 vii) t = t+1 and loop to step 2.

 The procedure comprised three iterative cycles to refine 
the accuracy of GEBV [21,22]. In each cycle, the weights 
assigned to SNPs were updated (step 4 and 5), and these 
updated weights were then used for several key steps: con-
structing G matrices (step 6), recalculating the GEBV (step 
2), and estimating the effects of SNPs (step 3). After updat-
ing the SNP weights, we computed the proportion of genetic 
variance accounted for by each successive group of SNPs, 
which are termed as the ith SNP windows [22]. For this 
study, SNPs within the 0.52 Mb range (a window size deter-
mined by the decay of LD in the studied population) were 
grouped together. The percentage of genetic variance ex-
plained by each of these 0.52 Mb SNP windows was then 
calculated as follows:
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 was the effect of the jth SNP within the ith 
window. To visualize the distribution of these SNP windows, 
Manhattan plots were generated using R software and the 
CMplot package [23,24]. The procedures described above 
were implemented iteratively using the BLUPF90 software 
suite [25].

Linkage disequilibrium decay estimation and 
identification of candidate genes
To evaluate the average LD decay across the Berkshire pig 
genome, we calculated the squared correlation (r2) between 
alleles using PLINK v1.9 [15], with a set window size of 1 
Mb. This analysis revealed that the average LD decay dis-
tance is approximately 520 kb, which is the point at which 
the r2 value drops to 0.2. Using this LD decay distance, we 
then calculated the genetic variance using 0.52 Mb windows.
 To identify significant SNP windows impacting TNB 
and NBA traits, we established a threshold of 1.56%. This 
threshold, informed by literature reviews [26,27] and the 
anticipated contribution of SNP windows to these traits 
[28], aligns with the WssGWAS criteria [29]. SNP windows 
explaining 1.56% or more of the total genetic variance were 
marked as significant, consistent with the expected 50-fold 
variance contribution of individual SNP windows (0.031% 
×50 = 1.56%).
 In studying tick resistance, we identified top windows 
containing QTL based on their genetic variance contribu-
tion, employing a similar methodology. The POSTGSF90 
tool was used on a dataset of 2,843 animals and 53,812 SNPs 
to locate these top windows.
 After pinpointing significant windows, candidate genes 
within these regions were explored using the Ensembl Sus 
scrofa 11.1 database (https://www.ensembl.org/biomart). 
This comprehensive pig genomic database allowed us to align 
significant SNP windows with the genome, facilitating the 
identification of potential genes affecting the traits under in-
vestigation. These findings offer valuable insights for further 
genetic analysis and could inform targeted improvements in 
breeding programs.

RESULTS AND DISCUSSION

In our study, we compared the heritability of productive traits 
using the PBLUP and ssGBLUP methods (Table 1). In this 
study, we analyzed the heritability and standard error estimates 
for TNB, NBA, and TNS using the PBLUP and ssGBLUP 
methods. The estimates obtained with PBLUP were 0.12 
(0.021), 0.14 (0.021), and 0.013 (0.010) for TNB, NBA, and 
TNS, respectively. In addition, the ssGBLUP method pro-
vided estimates of 0.13 (0.018), 0.12 (0.017), and 0.015 (0.009) 
for the same traits. Although the differences in heritability 
estimates were not statistically significant, the standard errors 
were consistently lower with ssGBLUP. These findings align 
with research indicating that integrating genomic data with 
pedigree information theoretically enhances the accuracy of 
estimated parameters [30].
 In terms of trait accuracy, PBLUP demonstrated the lowest 
accuracy, whereas the accuracy of WssGBLUP improved 
with additional iterations (Table 2). Compared with PBLUP, 
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the accuracy of WssGBLUP with weights assigned after 
three iterations increased by approximately 15% for TNB, 
10% for NBA, and 35% for TNS. These findings suggest that 
genomic data usage can lead to more precise breeding value 
estimations for traits with low heritability, like TNS, thereby 
potentially enhancing breeding efficiency.
 Molecular breeding identifies candidate genes linked to 
quantitative traits with complex genetic architectures. In pig 
breeding, reproductive performance, particularly litter size, 
directly affects farm profitability. Our study employed Wss-
GWAS to estimate the genetic variance explained by 0.52 Mb 
windows for TNB, NBA, and TNS (Figure 1). In the GWAS 
results, the regions with the highest explained genetic vari-
ance were over 4% in the Sus scrofa chromosome 5 (SSC5) 
region for TNB (Table 3), over 6% in the SSC 12 region for 
NBA (Table 4), and over 6% in the SSC 17 region for TNS 
(Table 5).
 Moreover, for TNB, regions exceeding the threshold in-
cluded SSC 4, 6, 8, 10, 12, and 18. In the SSC12 region (7.28 
to 7.78 Mb) with the highest variance for NBA, 31 SNPs and 
two candidate genes (RPL38, ENSSSCG00000046071) were 
identified. In addition, for NBA, regions surpassing the 
threshold were SSC 2, 4, 5, 7, 8, 10, 15, 16, and 18. For TNS, 
the SSC17 region (42.21 to 42.70 Mb) displayed the highest 
variance, with 12 SNPs and three candidate genes (ENSSSCG 
00000052330, ENSSSCG00000059132, DHX35) identified. 
Threshold-exceeding regions for TNS were SSC 1, 2, 7, 8, 12, 
16, and 18. Common candidate genes for TNB and NBA 
were identified because of their high correlation (TIMP3, 

SYN3, FBXO7, BPIFC in SSC 5, OSBPL9 in SSC 6, COPS4, 
THAP9, SEC31A, SCD5, TMEM150C in SSC 8, TLR5, SUSD4, 
CVPN2 in SSC 10, RPL38, ENSSSCG00000046071 in SSC 
12), but none were common with TNS in this study. Our re-
search identified SNPs exceeding 1.56% in variance, explaining 
149 for TNB, 187 for NBA, and 182 (Supplementary Table 
S2 to S4). These findings offer significant insights into the 
genetic basis of litter traits in pigs and present potential genetic 
markers for breeding programs. Generally, the heritability 
of litter traits is lower than that of growth traits. In this study, 
the heritability of TNB and NBA were 0.1 in the ssGBLUP 
analysis. Given TNS’s very low heritability, using genomic 
data in evaluating traits with low genetic influence becomes 
crucial, underscoring the importance of this research. Con-
sidering the minimal genetic influence, our study identified 
regions associated with litter size using WssGBLUP and 
WssGWAS. The analysis results indicate that SSC 8, SSC 
12, and SSC 18 consistently exceeded the threshold for each 
trait and are therefore considered the most critical regions 
in this study.
 We analyzed the genotypes of SNPs in regions demonstrat-
ing the highest genetic variance for each trait (Supplementary 
Figure S1 to S3). In TNB, the region at 12 Mb on SSC5 showed 
an additive variance of 4.26%. SNP analysis within this 
area revealed that in heterozygous individuals, TNB did 
not exceed nine, with the marker ASGA0024492 displaying 
the highest TNB in the minor homozygous (GG) group at 
9.05, 0.36 higher than that in the major homozygous (AA) 
group. For NBA, the 7 Mb region on SSC12 had an addi-
tive variance of 3.68%. The marker ASGA0084859 in this 
region showed the largest litter size in the major homozy-
gous group (GG) at 9.50, 1.75 more than that in the minor 
homozygous group (AA). For TNS, the 42 Mb region on 
SSC17 presented an additive variance of 6.16%. The marker 
WU_10.2_17_47838187 in this region indicated the lowest 
TNS in the major homozygous group (GG) at 0.90, 0.12 
less than in the minor homozygous group (AA), and 0.15 
less than that in the heterozygous group. Although the dif-
ferences were not substantial, the average TNS being less 
than one is significant because it could directly impact 
farm productivity, suggesting its potential as an important 
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Table 2. Comparison of the accuracy of PBLUP and WssGBLUP accord-
ing to the number of iterations

Trait PBLUP
WssGBUP

Iteration 1 Iteration 2 Iteration 3

TNB 0.58 0.62 0.63 0.67
NBA 0.60 0.62 0.63 0.66
TNS 0.31 0.33 0.35 0.42

PBLUP, pedigree based best linear unbiased prediction; WssGBLUP, 
weighted single-step genomic BLUP in each iteration; TNB, total 
number of piglets born; NBA, number of piglets born alive; TNS, total 
number of stillbirths.
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marker for use.
 The locus on SSC5, which encompasses genes TIMP3, 

SYN3, FBXO7, BPIFC, and RTCB, exhibited notable vari-
ance in relation to TNB. The TIMP gene family, including 

Figure 1. Manhattan plots of a genome-wide association study of litter traits in Berkshire pigs. (A) Total number of piglets born (TNB), (B) number 
of piglets born alive (NBA), and (C) total number of stillbirths (TNS). Each dot represents one single-nucleotide polymorphism window of 0.52 Mb. 
On the y-axis is the percentage of genetic variance explained by the windows.
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Table 3. Significant SNPs associated with the total number of piglets born (TNB) in Korean Berkshire pigs

SSC Position (Mb) gVar (%)1) Nsnp2) Candidate genes

4 95.60-96.11 1.94 17 IL6R, ATP8B2, HAX1, UBAP2L, CFA141, ENSSSCG00000006556, NUP210L
5 12.26-12.76 4.26 20 TIMP3, SYN3, FBXO7, BPIFC, RTCB

74.65-75.13 1.62 18 PUS7L, TWF1, TMEM117
6 153.91-154.42 2.12 30 MYSM1, TACSTD2, OMA1

160.47-160.99 2.58 13 RAB3B, NRDC, ENSSSCG00000058239, OSBPL9
8 135.27-135.79 1.77 28 COPS4, THAP9, SEC31A, SCD5, TMEM150C
10 19.51-20.00 2.41 19 TLR5, SUSD4, CAPN8
12 7.01-7.52 3.01 31 RPL38, ENSSSCG00000046071

56.87-57.37 2.12 17 ENSSSCG00000038836
18 19.10-19.55 2.19 14 NRF1

SNPs, single-nucleotide polymorphisms; SSC, Sus scrofa chromosome.
1) Percentage of genetic variance explained by 0.52 Mb.
2) Number of SNPs belonging to the position (Mb).
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TIMP1 through TIMP4, serves as a physiological inhibitor of 
matrix metalloproteinases (MMPs). TIMP3 is distinguished 
by its strong affinity for proteoglycans in the extracellular 
matrix (ECM) and its broad substrate specificity, impact-
ing MMPs, ADAMs (a disintegrin and metalloproteinases), 
and ADAMTSs (ADAM with thrombospondin motifs) 
[31]. Furthermore, despite stable TIMP3 transcription levels 
in porcine ovarian cysts, an increase at the protein level 
implies post-transcriptional or post-translational adjust-
ments, possibly linked to cyst development [32]. TIMP3, 
an inhibitor of ECM component degradation, showed in-
creased expression in the testicular tissue of Duroc pigs 
with a high DNA Fragmentation Index (DFI), suggesting a 
significant role in regulating sperm DNA integrity and ECM 
stability [33]. FBXO7, part of the SKP1-CUL1-F-box (SCF) 
E3 ubiquitin-protein ligase complex, is critical for substrate 
identification, phosphorylation-dependent ubiquitination, 

and subsequent proteasomal degradation of target proteins 
[34,35]. It also aids in the assembly of cyclin D–Cdk6 com-
plexes, interacting with D-type cyclins and Cdk6, and is 
expressed in various organs and tissues [36]. The TRAP/
SSR complex, consisting of TRAPα/SSR1, TRAPβ/SSR2, 
TRAPγ/SSR3, and TRAPδ/SSR4, facilitates protein translo-
cation, particularly for proteins with signal peptides that 
poorly interact with the Sec61 complex [37]. In pancreatic 
β-cells under high-glucose conditions, the upregulation of 
TRAP subunit mRNAs has been observed, indicating their 
importance in β-cell functionality [38]. A deficiency in the 
TRAPα/SSR1 gene is linked to disrupted preproinsulin trans-
location and decreased insulin storage in pancreatic β-cells 
[39]. The Sushi domain-containing 4 (SUSD4) gene, which 
is critical in neurodevelopment, is associated with neuro-
developmental disorders and immune system interactions, 
including its correlation with intestinal microbiota compo-

Table 4. Significant SNPs associated with the number of piglets born alive (NBA) in Korean Berkshire pigs

SSC Position (Mb) gVar (%)1) Nsnp2) Candidate genes

2 43.24-43.74 2.56 17 SOX6
4 10.39-10.91 1.85 23 ASAP1, ENSSSCG00000005959
5 12.27-12.77 2.08 20 TIMP3, SYN3, FBXO7, BPIFC
6 153.63-154.15 1.98 27 ENSSSCG00000056712, ENSSSCG00000053758

160.54-161.05 1.75 12 OSBPL9
7 5.09-5.61 1.85 28 SSR1, CAGE1, RIOK1, ENSSSCG00000043207, DSP, SNRNP48, BMP6
8 135.67-136.18 1.69 31 ENSSSCG00000009240, COPS4, THAP9, SEC31A, SCD5, TMEM150C
10 3.50-3.95 1.73 13 ENSSSCG00000057470, ENSSSCG00000053245

19.51-20.00 2.69 19 TLR5, SUSD4, CAPN2
24.80-25.30 1.64 13 KDM5B

12 7.28-7.78 3.68 31 RPL38, ENSSSCG00000046071
15 122.54-123.05 2.52 20 ENSSSCG00000060048, ENSSSCG00000059125, EPHA4
16 72.81-73.29 2.09 20 SEMA5A
18 11.25-11.72 1.57 10 -

SNPs, single-nucleotide polymorphisms; SSC, Sus scrofa chromosome.
1) Percentage of genetic variance explained by 0.52 Mb.
2) Number of SNPs belonging to the position (Mb).

Table 5. Significant SNPs associated with the total number of stillbirths (TNS) trait in Korean Berkshire pigs

SSC Position (Mb) gVar (%)1) Nsnp2) Candidate genes

1 251.78-252.30 3.42 21 MUSK, ENSSSCG00000005457, ECPAS, ENSSSCG00000044924, OR2K2, ECPAS
2 4.09-4.61 3.12 22 TPCN2, IGHMBP2, CPT1A, PPP6R3, LRP5
7 11.97-12.49 4.77 22 ENSSSCG00000061595, ENSSSCG00000057253, ATXN1, GMPR

116.36-116.88 2.14 22 ENSSSCG00000052470, DICER1, ENSSSCG00000042615, ENSSSCG00000057191
8 6.81-7.33 3.84 25 CLNK, ENSSSCG00000019781

111.76-112.28 5.93 10 ENSSSCG00000052805, ENSSSCG00000048102, ENPEP
12 59.68-60.19 4.32 16 NCOR1, SPECC1, AKAP10, ULK2, ADORA2B, SPECC1
16 62.00-62.49 4.16 13 GABRA6, ENSSSCG00000041732

17 12.15-12.67 2.38 19 ENSSSCG00000007004, ENSSSCG00000044124, ENSSSCG00000050111, ENSSS-
CG00000053036, ENSSSCG00000050358

42.21-42.70 6.16 12 ENSSSCG00000052330, ENSSSCG00000059132, DHX35
18 4.15-4.66 2.54 27 DPP6, ENSSSCG00000042794

SNPs, single-nucleotide polymorphisms; SSC, Sus scrofa chromosome.
1) Percentage of genetic variance explained by 0.52 Mb. 
2) Number of SNPs belonging to the position (Mb).
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sition in pigs [40,41].
 The locus on SSC12, which encompasses genes RPL38 
and ENSSSCG00000046071, showed significant variance re-
lated to NBA. Although these genes have been reported as 
potential candidate genes associated with productive traits 
such as average daily gain and days to 105 kg (AGE) in York-
shire pigs, no direct associations with swine reproductive 
traits have been reported [42]. The SOX6 gene on SSC2, which 
displayed the second-highest variance explained in NBA, has 
been identified as a candidate gene associated with NBA 
[43]. It plays a critical role in regulating fetal muscle develop-
ment [44], which may indirectly influence the survival of 
newborn pigs. In addition, toll-like receptors (TLRs), including 
TLR5, are pivotal in innate immunity by regulating antimi-
crobial responses in mucosal tissues. Their expression in the 
endometrium and placenta of pigs is crucial for controlling 
mucosal immune responses to support the establishment 
and maintenance of pregnancy [45].
 The locus on SSC17, which encompasses genes ENSSSCG 
00000052330, ENSSSCG00000059132, and DHX35, exhibited 
notable variance in relation to TNS. The ENPEP gene, located 
in the SSC8 region, has been reported to play a significant 
role in regulating blood flow and angiogenesis in the endo-
metrium, with direct implications for fetal wellbeing during 
late pregnancy [46]. Ataxin-1 (ATXN1), a candidate gene for 
body weight in pigs, is involved in cytoskeleton organization 
and microtubule dynamics. Higher expression of myostatin 
(MSTN) in growing animals compared with transitional pig-
lets [47], with variations among pig breeds, has been noted. 
Given the reported role of ATXN1 in regulating fetal skin 
development [48], these genes could be linked to stillbirth 
rates in pigs.

CONCLUSION

Our research has effectively used the WssGWAS and Wss-
GBLUP methodologies to enhance our understanding of 
genetic influences on productive traits in pigs, particularly 
focusing on reproductive performance. Through WssGWAS, 
we identified critical genomic regions and candidate genes, 
such as those in the SSC5 region, that significantly impact 
the variance in traits like TNB, NBA, and TNS. Our com-
parative analysis using PBLUP and WssGBLUP demonstrated 
that WssGBLUP offers more accurate heritability estimates 
by integrating both pedigree and genomic information. This 
precision is especially valuable for traits with low heritability, 
such as TNS, underscoring the need to incorporate genomic 
data into breeding value estimations to improve breeding ef-
ficiency. In addition, analyzing consecutive SNP windows in 
GWAS proved more effective than focusing on individual 
SNPs, enhancing our ability to identify additional influential 
regions and candidate genes.

 To build upon these findings, we will conduct further re-
search to validate and refine the genomic techniques used. 
This includes expanding our data collection to encompass 
larger and more diverse pig populations, implementing 
identified genomic markers in controlled breeding experi-
ments, and cross-validating these markers across various 
breeds and conditions. We also plan to apply advanced ge-
nomic techniques to develop new traits, enhance disease 
resistance, and improve feed efficiency. These initiatives are 
crucial for broadening the scope of our genetic research and 
are expected to significantly improve the health and efficiency 
of pig populations.
 In conclusion, our study underscores the essential role of 
sophisticated genomic techniques in deciphering the com-
plex genetic architecture of productive traits in pigs. These 
methods have established a foundation for the development 
of more precise and efficient breeding strategies that enhance 
farm productivity and profitability. By extending these meth-
odologies to include research on disease resistance, feed 
efficiency, and the development of new traits, we aim to ad-
dress crucial yet challenging traits due to their low heritability, 
further advancing pig breeding research.
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