DOI QR코드

DOI QR Code

A state-of-the-art review on earthquake soil-structure interaction including dynamic cross interaction (DCI) and site city interactions (SCI)

  • Karan Singhai (Department of Civil Engineering, Maulana Azad National Institute of Technology) ;
  • Neeraj Tiwari (Department of Civil Engineering, Maulana Azad National Institute of Technology)
  • 투고 : 2024.06.26
  • 심사 : 2024.08.13
  • 발행 : 2024.11.25

초록

Earthquake soil-structure interaction (ESSI) is the dynamic interaction between seismic waves, soil layers underlying structures, and the structures themselves during earthquakes, which affects the structures' response. This relationship impacts foundation behaviour, soil amplification, energy dissipation, nonlinear effects, resonance phenomena, and earthquake design considerations. Comprehending ESSI is crucial for evaluating structural performance, creating resilient structures and executing efficient seismic retrofitting procedures in earthquake-prone areas. Present seismic standards do not account for interbuilding dynamic interactions through the soil, and hence the associated seismic risk is ignored. However, due to recent population growth in cities and rising land costs, there has been a rise in city building surface density, resulting in buildings being more closely spaced. The seismic analysis of a city with high building surface density is very complex due to detailed requirement material and geometrical properties of historical as well as present structures. The construction of new building adjacent to preexisting building can either reduce or increase its structural response. This phenomenon of dynamic interaction between existing and newly built buildings is known as dynamic cross interaction (DCI) whereas site-city interactions (SCI) describe the effects of a group of structures on the overall seismic response of the site or city. This study covers the entire literature review of the pioneer findings in the field of ESSI considering different types of structures, mitigation techniques, ESSI modelling techniques, comparison between experimental and numerical techniques for earthquake analysis and latest concepts related to ESSI, DCI and SCI further the research gaps and future scope is also discussed.

키워드

참고문헌

  1. Abdeddaim, M., Djerouni, S., Ounis, A., Athamnia, B. and Farsangi, E. (2022), "Optimal design of magnetorheological damper for seismic response reduction of base-isolated structures considering soil-structure interaction", Struct., 38, 733-752. https://doi.org/10.1016/j.istruc.2022.02.039.
  2. Abdel Raheem, S. (2014), "Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings", Bull. Earthq. Eng., 12, 1705-1724. https://doi.org/10.1007/s10518-014-9592-2.
  3. Abdulaziz, M.A., Hamood, M.J. and Fattah, M.Y. (2023), "A review study on seismic behavior of individual and adjacent structures considering the soil - Structure interaction", Struct., 52, 348-369. https://doi.org/10.1016/j.istruc.2023.03.186.
  4. Aji, H.D.B., Wuttke, F. and Dineva, P. (2022), "3D structure-soil-structure interaction in an arbitrary layered half-space", Soil Dyn. Earthq. Eng., 159, 107352. https://doi.org/10.1016/J.SOILDYN.2022.107352.
  5. Akkar, S., Sucuoglu, H. and Yakut, A. (2005), "Displacement-based fragility functions for low- And mid-rise ordinary concrete buildings", Earthq. Spectra, 21(4), 901-927. https://doi.org/10.1193/1.2084232.
  6. Alam, M.I. and Kim, D. (2014), "Spatially varying ground motion effects on seismic response of adjacent structures considering soil-structure interaction", Adv. Struct. Eng., 17(1), 131-142. https://doi.org/10.1260/1369-4332.17.1.131.
  7. Aldaikh, H., Alexander, N.A., Ibraim, E. and Oddbjornsson, O. (2015), "Two dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings", Comput. Struct., 150(C), 79-91. https://doi.org/10.1016/j.compstruc.2015.01.003.
  8. Ali, T., Eldin, M.N. and Haider, W. (2023), "The effect of soil-structure interaction on the seismic response of structures using machine learning, finite element modeling and ASCE 7-16 methods", Sensors, 23(4), 2047. https://doi.org/10.3390/s23042047.
  9. American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  10. Amorosi, A., Boldini, D. and Falcone, G. (2014), "Numerical prediction of tunnel performance during centrifuge dynamic tests", Acta Geotech., 9, 581-596. https://doi.org/10.1007/s11440-013-0295-7.
  11. Anand, V. and Satish Kumar, S.R. (2018), "Seismic soil-structure interaction: A state-of-the-art review", Struct., 16, 317-326. https://doi.org/10.1016/J.ISTRUC.2018.10.009.
  12. Anand, V. and Satish Kumar, S.R. (2022), "Sensitivity of strength reduction factor for structures considering soil-structure interaction", Struct., 39, 593-606. https://doi.org/10.1016/J.ISTRUC.2022.02.058.
  13. Andrus, R.D. and Chung, R.M. (1995), Ground Improvement Techniques for Liquefaction Remediation Near Existing Lifelines, US National Institute of Standards and Technology, Gaithersburg, MD, USA.
  14. ASCE/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  15. Astorga, A., Gueguen, P. and Kashima, T. (2018), "Nonlinear elasticity observed in buildings during a long sequence of earthquakes", Bull. Seismol. Soc. Am., 108(3A), 1185-1198. https://doi.org/10.1785/0120170289.
  16. Astroza, R., Ebrahimian, H., Conte, J.P., Restrepo, J.I. and Hutchinson, T.C. (2016), "System identification of a full-scale five-story reinforced concrete building tested on the NEESUCSD shake table", Struct. Control Health Monit., 23(3), 535-559. https://doi.org/10.1002/stc.1778.
  17. Aydin, E., Ozturk, B., Bogdanovic, A. and Noroozinejad Farsangi, E. (2020), "Influence of soil-structure interaction (SSI) on optimal design of passive damping devices", Struct., 28, 847-862. https://doi.org/10.1016/j.istruc.2020.09.028.
  18. Azhir, P., Asgari Marnani, J., Panji, M. and Rohanimanesh, M.S. (2024), "A coupled finite-boundary element method for efficient dynamic structure-soil-structure interaction modeling", Math. Comput. Appl., 29(2), 24. https://doi.org/10.3390/mca29020024.
  19. Bakre, S.V., Jangid, R.S. and Reddy, G.R. (2006), "Optimum X-plate dampers for seismic response control of piping systems", Int. J. Press. Vessels Pip., 83(9), 672-685. https://doi.org/10.1016/j.ijpvp.2006.05.003.
  20. Bapir, B., Abrahamczyk, L., Wichtmann, T. and Prada Sarmiento, L. (2023), "Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures", Front. Built Environ., 9, 1120351. https://doi.org/10.3389/fbuil.2023.1120351.
  21. Barbato, M. and Tubaldi, E. (2013), "A probabilistic performance-based approach for mitigating the seismic pounding risk between adjacent buildings", Earthq. Eng. Struct. Dyn., 42, 1203-1219. https://doi.org/10.1002/eqe.2267.
  22. Barcena, A. and Esteva, L. (2007), "Influence of dynamic soil-structure interaction on the nonlinear response and seismic reliability of multistorey systems", Earthq. Eng. Struct. Dyn., 36(3), 327-346. https://doi.org/10.1002/eqe.633.
  23. Behroozeh, S., Gholamreza, N. and Ali, G. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667.
  24. Bielak, J., Loukakis, K., Hisada, Y. and Yoshimura, C. (2003), "Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: Theory", Bull. Seismol. Soc. Am., 93(2), 817-824. https://doi.org/10.1785/0120010251.
  25. Bilgin, N., Balci, C. and Aslanbas, A. (2021), "Case studies leading to the management of tunnel fire risks during TBM drives in an old coalfield", Tunn. Undergr. Sp. Technol., 112, 103902. https://doi.org/10.1016/J.TUST.2021.103902.
  26. Bird, J., Bommer, J., Crowley, H. and Pinho, R. (2006), "Modelling liquefaction-induced building damage in earthquake loss estimation", Soil Dyn. Earthq. Eng., 26, 15-30. https://doi.org/10.1016/j.soildyn.2005.10.002.
  27. Bolisetti, C. and Whittaker, A.S. (2015), Site Response, Soil-Structure Interaction and Structure-Soil-Structure Interaction for Performance Assessment of Buildings and Nuclear Structures, State University of New York at Buffalo, Buffalo, NY, USA.
  28. Bonnefoy-Claudet, S., Baize, S., Bonilla, L.F., Berge-Thierry, C., Pasten, C., Campos, J., Volant, P. and Verdugo, R. (2009), "Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements", Geophys. J. Int., 176(3), 925-937. https://doi.org/10.1111/j.1365-246X.2008.04020.x.
  29. Borghei, A., Ghayoomi, M. and Turner, M. (2020), Centrifuge Tests to Evaluate Seismic Settlement of Shallow Foundations on Unsaturated Silty Sand, American Society of Civil Engineers, Reston, VA, USA.
  30. Boutin, C. and Roussillon, P. (2004), "Assessment of the urbanization effect on seismic response", Bull. Seismol. Soc. Am., 94(1), 251-268. https://doi.org/10.1785/0120030050.
  31. Bozorgnia, Y. (2004), Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  32. Brebbia, C.A. and Dominguez, J. (1996), Boundary Elements: An Introductory Course, WIT Press, Southampton, UK.
  33. Bu, C., Lu, X., Zhu, D., Liu, L., Sun, Y., Wu, Q., Zhang, W. and Wei, Q. (2022), "Soil improvement by microbially induced calcite precipitation (MICP): A review about mineralization mechanism, factors, and soil properties", Arab. J. Geosci., 15, 863. https://doi.org/10.1007/s12517-022-10012-w.
  34. Bureau of Indian Standards (2016), Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi, India.
  35. Bybordiani, M. and Arici, Y. (2019), "Structure-soil-structure interaction of adjacent buildings subjected to seismic loading", Earthq. Eng. Struct. Dyn., 48(7), 731-748. https://doi.org/10.1002/eqe.3162.
  36. Calvi, G., Sullivan, T. and Welch, D. (2014), "A seismic performance classification framework to provide increased seismic resilience", Geotech. Geol. Earthq. Eng., 34, 361-400. https://doi.org/10.1007/978-3-319-07118-3_11.
  37. Calvi, G.M. (2013), "Choices and criteria for seismic strengthening", J. Earthq. Eng., 17(6), 769-802. https://doi.org/10.1080/13632469.2013.781556.
  38. Capozzo, M., Rizzi, A., Cimellaro, G., Domaneschi, M., Barbosa, A. and Cox, D. (2019), "Multi-hazard resilience assessment of a coastal community due to offshore earthquakes", J. Earthq. Tsunami, 13, 1950008. https://doi.org/10.1142/S1793431119500088.
  39. Celebi, M., Kashima, T., Ghahari, S.F., Abazarsa, F. and Taciroglu, E. (2016), "Responses of a tall building with U.S. code-type instrumentation in Tokyo, Japan, to events before, during and after the Tohoku earthquake of 11 March 2011", Earthq. Spectra, 32(1), 497-522. https://doi.org/10.1193/052114EQS071M.
  40. Celik, O.C. and Ellingwood, B.R. (2010), "Seismic fragilities for non-ductile reinforced concrete frames - Role of aleatoric and epistemic uncertainties", Struct. Saf., 32(1), 1-12. https://doi.org/10.1016/J.STRUSAFE.2009.04.003.
  41. Celik, O.C. Zienkiewicz, R. L. T. and J. Z. Z. (2013), The Finite Element Method: Its Basis and Fundamentals, 7th Edition, World Scientific, Singapore.
  42. Chandrawanshi, S. and Garg, V. (2024), "Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building", Earthq. Struct., 26, 477-487. https://doi.org/10.12989/eas.2024.26.6.477.
  43. Chen, S., Liu, Q., Zhai, C. and Wen, W. (2022), "Influence of building-site resonance and building properties on site-city interaction: A numerical investigation", Soil Dyn. Earthq. Eng., 158, 107307. https://doi.org/10.1016/j.soildyn.2022.107307.
  44. Chen, S., Zhai, C., Liu, Q., Ji, D., Wen, W. and Xie, L. (2023), "Assessing the influence of nonlinear soil behaviour on site-city interaction", Soil Dyn. Earthq. Eng., 171, 107973. https://doi.org/https://doi.org/10.1016/j.soildyn.2023.107973.
  45. Colaco, A., Barbosa, D. and Alves Costa, P. (2022), "Hybrid soil-structure interaction approach for the assessment of vibrations in buildings due to railway traffic", Transp. Geotech., 32, 100691. https://doi.org/10.1016/j.trgeo.2021.100691.
  46. de Silva, C.W. (2005), Vibration and Shock Handbook, 1st Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  47. Durante, M.G., Di Sarno, L., Mylonakis, G., Taylor, C.A. and Simonelli, A.L. (2016), "Soil-pile-structure interaction: Experimental outcomes from shaking table tests" Earthq. Eng. Struct. Dyn., 45(7), 1041-1061. https://doi.org/10.1002/eqe.2694.
  48. Dutta, S.C., Bhattacharya, K. and Roy, R. (2004), "Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction", Soil Dyn. Earthq. Eng., 24(12), 893-914. https://doi.org/10.1016/J.SOILDYN.2004.07.001.
  49. Efraimiadou, S., Hatzigeorgiou, G.D. and Beskos, D.E. (2013), "Structural pounding between adjacent buildings subjected to strong ground motions. Part I: The effect of different structures arrangement", Earthq. Eng. Struct. Dyn., 42(10), 1509-1528. https://doi.org/10.1002/eqe.2285.
  50. El Hoseny, M., Ma, J., Dawoud, W. and Forcellini, D. (2023), "The role of soil structure interaction (SSI) on seismic response of tall buildings with variable embedded depths by experimental and numerical approaches", Soil Dyn. Earthq. Eng., 164, 107583. https://doi.org/10.1016/J.SOILDYN.2022.107583.
  51. Elbadawy, M. (2014), "Seismic response analysis considering soil-structure interaction of high-rise buildings", Doctoral Dissertation, Minia University, Minia, Egypt.
  52. Elgamal, A.W., Yang, Z., Parra, E. and Ragheb, A. (2003), "Modeling of cyclic mobility in saturated cohesionless soils", Int. J. Plast., 19, 883-905. https://doi.org/10.1016/S0749-6419(02)00010-4.
  53. Elnashai, A. and Di Sarno, L. (2015), Fundamentals of Earthquake Engineering, From Source to Fragility, John Wiley & Sons Inc., Hoboken, NJ, USA.
  54. Emami, A. and Halabian, A. (2020), "Seismic response assessment of reinforced concrete structures based on displacement, force and energy criteria, considering soil-structure interaction", Austr. J. Struct. Eng., 21, 1-30. https://doi.org/10.1080/13287982.2019.1706700.
  55. European Committee for Standardization (2004), EN 1998-1: Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  56. Fajfar, P. (2018), "Analysis in seismic provisions for buildings: past, present and future: The fifth Prof. Nicholas Ambraseys lecture", Bull. Earthq. Eng., 16(7), 2567-2608. https://doi.org/10.1007/s10518-017-0290-8.
  57. Fardis, M. (2009), Seismic Design, Assessment and Retrofitting of Concrete Buildings Based on EN-Eurocode 8, Springer Dordrecht, Dordrecht, Netherlands.
  58. Fardis, M. (2018), "Capacity design: Early history", Earthq. Eng. Struct. Dyn., 47, 2887-2896. https://doi.org/10.1002/eqe.3110.
  59. Farghaly, A.A. (2017), "Seismic analysis of adjacent buildings subjected to double pounding considering soil-structure interaction", Int. J. Adv. Struct. Eng., 9(1), 51-62. https://doi.org/10.1007/s40091-017-0148-y.
  60. Fatollahpour, A., Tafakori, E. and Ali Asghar Arjmandi, S. (2023), "The effects of structure-soil-structure interaction on seismic response of high-rise buildings equipped with optimized tuned mass damper", Struct., 50, 998-1010. https://doi.org/10.1016/j.istruc.2023.01.132.
  61. Fiorentino, G., Forte, A., Pagano, E., Sabetta, F., Baggio, C., Lavorato, D., Nuti, C. and Santini, S. (2018), "Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes", Bull. Earthq. Eng., 16(3), 1399-1423. https://doi.org/10.1007/s10518-017-0254-z.
  62. Firoozi, A.A. and Firoozi, A.A. (2023), "Soil-structure interaction: Understanding and mitigating challenges", Challenges in Foundation Engineering - Case Studies and Sustainable Practices, IntechOpen, London, UK.
  63. Forcellini, D. (2022), "Seismic fragility of tall buildings considering soil structure interaction (SSI) effects", Struct., 45, 999-1011. https://doi.org/10.1016/j.istruc.2022.09.070.
  64. Fotopoulou, S.D. and Pitilakis, K.D. (2013a), "Fragility curves for reinforced concrete buildings to seismically triggered slow-moving slides", Soil Dyn. Earthq. Eng., 48, 143-161. https://doi.org/10.1016/J.SOILDYN.2013.01.004.
  65. Fotopoulou, S.D. and Pitilakis, K.D. (2013b), "Vulnerability assessment of reinforced concrete buildings subjected to seismically triggered slow-moving earth slides", Landslides, 10(5), 563-582. https://doi.org/10.1007/s10346-012-0345-5.
  66. Gallo, M., Tomeo, R. and Nigro, E. (2022), "The soil-structure interaction effect on the seismic vulnerability assessment and retrofitting of existing bridges", Procedia Struct. Integr., 44, 618-625. https://doi.org/10.1016/j.prostr.2023.01.081.
  67. Gazetas, G. (2015), "4th Ishihara lecture: Soil-foundation-structure systems beyond conventional seismic failure thresholds", Soil Dyn. Earthq. Eng., 68, 23-39. https://doi.org/10.1016/j.soildyn.2014.09.012.
  68. Gerolymos, N. and Gazetas, G. (2006), "Winkler model for lateral response of rigid caisson foundations in linear soil", Soil Dyn. Earthq. Eng., 26(5), 347-361. https://doi.org/10.1016/J.SOILDYN.2005.12.003.
  69. Ghergu, M. and Ionescu, I.R. (2009), S"tructure-soil-structure coupling in seismic excitation and 'city effect'", Int. J. Eng. Sci., 47(3), 342-354. https://doi.org/10.1016/j.ijengsci.2008.11.005.
  70. Givens, M.J., Stewart, J.P. and Haselton, C.B. (2012), "Assessment of soil-structure interaction modeling strategies for response history analysis of buildings", 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisbon, Portugal, September.
  71. Gkimprixis, A., Tubaldi, E. and Douglas, J. (2019), "Comparison of methods to develop risk-targeted seismic design maps", Bull. Earthq. Eng., 17, 3727-3752. https://doi.org/10.1007/s10518-019-00629-w.
  72. Goda, K., Petrone, C., De Risi, R. and Rossetto, T. (2017), "Stochastic coupled simulation of strong motion and tsunami for the 2011 Tohoku, Japan earthquake", Stochast. Environ. Res. Risk Assess., 31(9), 2337-2355. https://doi.org/10.1007/s00477-016-1352-1.
  73. Gorini, D.N. and Chisari, C. (2019), "Effect of soil-structure interaction on seismic performance of tuned mass dampers in buildings", Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  74. Gueguen, P. (2013), Seismic Vulnerability of Structures, John Wiley & Sons Inc., Hoboken, NJ, USA.
  75. Gueguen, P. and Colombi, A. (2016), "Experimental and numerical evidence of the clustering effect of structures on their response during an earthquake: A case study of three identical towers in the city of Grenoble, France", Bull. Seismol. Soc. Am., 106(6), 2855-2864. https://doi.org/10.1785/0120160057.
  76. Gueguen, P., Bard, P.Y. and Chavez-García, F.J. (2002), "Site-city seismic interaction in Mexico City-like environments: An analytical study", Bull. Seismol. Soc. Am., 92(2), 794-811. https://doi.org/10.1785/0120000306.
  77. Hamburger, R. (2014), "FEMA P58 seismic performance assessment of buildings", NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, AK, USA, July.
  78. Heiland, T., Aji, H.D.B., Wuttke, F., Stempniewski, L. and Stark, A. (2023), "Influence of soil-structure interaction on the dynamic characteristics of railroad frame bridges", Soil Dyn. Earthq. Eng., 167, 107800. https://doi.org/10.1016/j.soildyn.2023.107800.
  79. International Code Council (2021), 2021 International Building Code, International Code Council, Washington D.C., USA.
  80. Isbiliroglu, Y., Taborda, R. and Bielak, J. (2014), "Multiple structure-soil-structure interaction and coupling effects in building clusters", NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, AK, USA, July.
  81. Isbiliroglu, Y., Taborda, R. and Bielak, J. (2015), "Coupled soil-structure interaction effects of building clusters during earthquakes", Earthq. Spectra, 31(1), 463-500. https://doi.org/10.1193/102412EQS315M.
  82. Jangid, R.S. and Datta, T.K. (1995), "Seismic behaviour of base-isolated buildings: A state-of-the art review", Proce. Inst. Civil Eng. Struct. Build., 110(2), 186-203. https://doi.org/10.1680/istbu.1995.27599.
  83. Jankowski, R. and Mahmoud, S. (2016), "Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes", Bull. Earthq. Eng., 14, 3075-3097. https://doi.org/10.1007/s10518-016-9946-z.
  84. Kamal, M., Inel, M. and Cayci, B.T. (2022), "Seismic behavior of mid-rise reinforced concrete adjacent buildings considering soil-structure interaction", J. Build. Eng., 51, 104296. https://doi.org/10.1016/j.jobe.2022.104296.
  85. Kamolov, S. (2024), "Machine learning methods in civil engineering: a systematic review", Annal. Math. Comput. Sci., 21, 181-191. https://doi.org/10.56947/amcs.v21.277.
  86. Karamitros, D., Bouckovalas, G. and Chaloulos, Y. (2013), "Insight into the seismic liquefaction performance of shallow foundations", J. Geotech. Geoenviron. Eng. ASCE, 139, 599-607. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000797.
  87. Karatzetzou, A. and Pitilakis, D. (2017), "Modification of dynamic foundation response due to soil-structure interaction", J. Earthq. Eng., 22(5), 861-880. https://doi.org/10.1080/13632469.2016.1264335.
  88. Karimi, Z. and Dashti, S. (2015), "Numerical and centrifuge modeling of seismic soil-foundation-structure-interaction on liquefiable ground", J. Geotech. Geoenviron. Eng., 142(1), 04015061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001346.
  89. Kausel, E. (2010), "Early history of soil-structure interaction", Soil Dyn. Earthq. Eng., 30(9), 822-832. https://doi.org/10.1016/J.SOILDYN.2009.11.001.
  90. Kazemi, F., Miari, M. and Jankowski, R. (2021), "Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs", Bull. Earthq. Eng., 19(1), 317-343. https://doi.org/10.1007/s10518-020-00985-y.
  91. Kechidi, S., Colaco, A., Alves Costa, P., Castro, J.M. and Marques, M. (2021), "Modelling of soil-structure interaction in OpenSees: A practical approach for performance-based seismic design", Struct., 30, 75-88. https://doi.org/10.1016/j.istruc.2021.01.006.
  92. Kham, M., Semblat, J.F., Bard, P.Y. and Dangla, P. (2006), "Seismic site-city interaction: Main governing phenomena through simplified numerical models", Bull. Seismol. Soc. Am., 96(5), 1934-1951. https://doi.org/10.1785/0120050143.
  93. Khodakarami, M., Dehghan, M. and Kontoni, D.P. (2022), "Modeling of soil-structure interaction in liquefiable soils using an equivalent linear approach including shear modulus updating", Recent Trends in Civil Engineering: Select Proceedings of ICRACE 2021, Springer Singapore, Singapore.
  94. Kishida, T. and Tsai, C.C. (2021), "Wave velocities depending on shear strain, directionality, and excess pore water pressure from wildlife liquefaction array", Bull. Earthq. Eng., 19(6), 2371-2388. https://doi.org/10.1007/s10518-021-01074-4.
  95. Koks, E.E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S.A., Hall, J.W. and Hallegatte, S. (2019), "A global multi-hazard risk analysis of road and railway infrastructure assets", Nat. Commun., 10(1), 2677. https://doi.org/10.1038/s41467-019-10442-3.
  96. Kontoe, S., Zdravkovic, L. and Potts, D. (2008), "An assessment of time integration schemes for dynamic geotechnical problems", Comput. Geotech., 35, 253-264. https://doi.org/10.1016/j.compgeo.2007.05.001.
  97. Kramer, S.L. (2016), Geotechnical Earthquake Engineering, Prentice Hall, Englewood Cliffs, NJ, USA.
  98. Kumar, S. and Chakraborty, S.K. (2020), "Influence of scattering of SH-waves in dynamic interaction of shear wall with soil layers", Earthq. Eng. Eng. Vib., 19(3), 583-595. https://doi.org/10.1007/s11803-020-0582-x.
  99. Kwon, O.S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28, 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010.
  100. Kwon, O.S., Nakata, N., Elnashai, A. and Spencer, B. (2005), "A framework for multi-site distributed simulation and application to complex structural systems", J. Earthq. Eng., 22, 741-753. https://doi.org/10.1080/13632460509350564.
  101. Laefer, D. and Manke, D. (2008), "Building reuse assessment for sustainable urban reconstruction", J. Constr. Eng. Manag., 134, 217-227. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:3(217).
  102. Li, P., Liu, S. and Lu, Z. (2017a), "Studies on pounding response considering structure-soil-structure interaction under seismic loads", Sustainab., 9(12), 2219. https://doi.org/10.3390/su9122219.
  103. Li, P., Liu, S., Lu, Z. and Yang, J. (2017b), "Numerical analysis of a shaking table test on dynamic structure-soil-structure interaction under earthquake excitations", Struct. Des. Tall Spec. Build., 26(15), e1382. https://doi.org/10.1002/tal.1382.
  104. Liu, B., Zhang, D., Li, X. and Li, J. (2022), "Seismic response of underground structure-soil-aboveground structure coupling system: Current status and future prospects", Tunn. Undergr. Sp. Technol., 122, 104372. https://doi.org/10.1016/j.tust.2022.104372.
  105. Liu, C., Yang, W., Yan, Z., Lu, Z. and Luo, N. (2017), "Base pounding model and response analysis of base-isolated structures under earthquake excitation", Appl. Sci., 7(12), 1238. https://doi.org/10.3390/app7121238.
  106. Liu, S., Li, P., Zhang, W. and Lu, Z. (2020), "Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations", Soil Dyn. Earthq. Eng., 138, 106333. https://doi.org/10.1016/j.soildyn.2020.106333.
  107. Loli, M., Knappett, J.A., Brown, M.J., Anastasopoulos, I. and Gazetas, G. (2014), "Centrifuge modeling of rocking-isolated inelastic RC bridge piers". Earthq. Eng. Struct. Dyn., 43(15), 2341-2359. https://doi.org/10.1002/eqe.2451.
  108. Long, H., Wang, Z., Zhang, C., Zhuang, H., Chen, W. and Peng, C. (2021), "Nonlinear study on the structure-soil-structure interaction of seismic response among high-rise buildings", Eng. Struct., 242, 112550. https://doi.org/10.1016/j.engstruct.2021.112550.
  109. Lopez-Garcia, D. and Soong, T.T. (2009), "Assessment of the separation necessary to prevent seismic pounding between linear structural systems", Probab. Eng. Mech., 24(2), 210-223. https://doi.org/10.1016/J.PROBENGMECH.2008.06.002.
  110. Lou, M., Wang, H., Chen, X. and Zhai, Y. (2011), "Structure-soil-structure interaction: Literature review", Soil Dyn. Earthq. Eng., 31(12), 1724-1731. https://doi.org/10.1016/J.SOILDYN.2011.07.008.
  111. Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
  112. Madabhushi, G. (2014), Centrifuge Modelling for Civil Engineers, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
  113. Mahmoud, S. and Jankowski, R. (2011), "Modified linear viscoelastic model of earthquake-induced structural pounding", Iran. J. Sci. Technol. Trans. B: Eng., 35, 51-62.
  114. Mahoney, M. and Hanson, R.D. (2012), Seismic Performance Assessment of Buildings Volume 1-Methodology, 2nd Edition, Federal Emergency Management Agency, Washington, D.C., USA.
  115. Maio, R., Tsionis, G. and European Commission Joint Research Centre (2015), "Seismic fragility curves for the European building stock: Review and evaluation of existing fragility curves", Technical Report; European Commission Joint Research Centre, Ispra, Italy.
  116. Mangalathu, S. and Jeon, J.S. (2018), "Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques", Eng. Struct., 160, 85-94. https://doi.org/10.1016/j.engstruct.2018.01.008.
  117. Mangalathu, S. and Jeon, J.S. (2019a), "Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques", Earthq. Eng. Struct. Dyn., 48(11), 1238-1255. https://doi.org/10.1002/eqe.3183.
  118. Mangalathu, S. and Jeon, J.S. (2019b), "Machine learning-based failure mode recognition of circular reinforced concrete bridge columns: Comparative study", J. Struct. Eng., 145(10), 04019104. https://doi.org/10.1061/(asce)st.1943-541x.0002402.
  119. Mayoral, J., Argyroudis, S. and Castanon, E. (2016), "Vulnerability of floating tunnel shafts for increasing earthquake loading", Soil Dyn. Earthq. Eng., 80, 1-10. https://doi.org/10.1016/j.soildyn.2015.10.002.
  120. Miao, Y., Zhong, Y., Ruan, B., Cheng, K. and Wang, G. (2020), "Seismic response of a subway station in soft soil considering the structure-soil-structure interaction", Tunn. Undergr. Sp. Technol., 106, 103629. https://doi.org/10.1016/J.TUST.2020.103629.
  121. Miari, M., Choong, K. and Jankowski, R. (2020), "Seismic pounding between bridge segments: A state-of-the-art review", Arch. Comput. Methods Eng., 28, 495-504. https://doi.org/10.1007/s11831-019-09389-x.
  122. Mitropoulou, C.C., Kostopanagiotis, C., Kopanos, M., Ioakim, D. and Lagaros, N.D. (2016), "Influence of soil-structure interaction on fragility assessment of building structures", Struct., 6, 85-98. https://doi.org/10.1016/j.istruc.2016.02.005.
  123. Mohammad, H. and Bazyar, C.S. (2006), "Transient analysis of dynamic soil-structure interaction using the scaled boundary finite-element method", Proceedings of the 19th Australasian Conference on the Mechanics of Structures and Materials (ACMSM19), Christchurch, New Zealand, November-December.
  124. Mosalam, K.M. and Gunay, S. (2014), "Seismic performance evaluation of high voltage disconnect switches using real-time hybrid simulation: I. System development and validation", Earthq. Eng. Struct. Dyn., 43(8), 1205-1222. https://doi.org/https://doi.org/10.1002/eqe.2395.
  125. Muranushi, T., Hotta, H., Makino, J., Nishizawa, S., Tomita, H., Nitadori, K., Iwasawa, M., Hosono, N., Maruyama, Y., Inoue, H., Yashiro, H. and Nakamura, Y. (2016), "Simulations of below-ground dynamics of fungi: 1.184 pflops attained by automated generation and autotuning of temporal blocking codes", SC '16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City, UT, USA, November.
  126. Mwafy, A.M., Kwon, O.S., Elnashai, A. and Hashash, Y.M.A. (2011), "Wave passage and ground motion incoherency effects on seismic response of an extended bridge", J. Bridge Eng., 16(3), 364-374. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000155.
  127. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental?", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
  128. Mylonakis, G., Nikolaou, S. and Gazetas, G. (2006), "Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations", Soil Dyn. Earthq. Eng., 26(9), 824-853. https://doi.org/10.1016/J.SOILDYN.2005.12.005.
  129. Naserkhaki, S., Abdul Aziz, F. and Pourmohammad, H. (2012), "Earthquake induced pounding between adjacent buildings considering soil-structure interaction", Earthq. Eng. Eng. Vib., 11, 343-358. https://doi.org/10.1007/s11803-012-0126-0.
  130. Nguyen, H.D. and Shin, M. (2021), "Effects of soil-structure interaction on seismic performance of a low-rise R/C moment frame considering material uncertainties", J. Build. Eng., 44, 102713. https://doi.org/10.1016/J.JOBE.2021.102713.
  131. NIST (2012), "Soil-structure interaction for building structures", Technical Report NIST GCR 12-917-21; NEHRP Consultants Joint Venture A partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA.
  132. Padron, L.A., Aznarez, J. and Maeso, O. (2007), "BEM-FEM coupling model for the dynamic analysis of piles and pile groups", Eng. Anal. Bound. Elem., 31, 473-484. https://doi.org/10.1016/j.enganabound.2006.11.001.
  133. Padron, L.A., Aznarez, J.J. and Maeso, O. (2009), "Dynamic structure-soil-structure interaction between nearby piled buildings under seismic excitation by BEM-FEM model", Soil Dyn. Earthq. Eng., 29(6), 1084-1096. https://doi.org/10.1016/J.SOILDYN.2009.01.001.
  134. Panchal, V.R. and Jangid, R.S. (2012), "Behaviour of liquid storage tanks with VCFPS under near-fault ground motions", Struct. Infrastr. Eng., 8(1), 71-88. https://doi.org/10.1080/15732470903300919.
  135. Pecker, A. (2023), "Interrelationships between practice, standardisation and innovation in geotechnical earthquake engineering", Bull. Earthq. Eng., 21, 1-42. https://doi.org/10.1007/s10518-023-01669-z.
  136. Pecker, A., Paolucci, R., Chatzigogos, C.T., Correia, A. and Figini, R. (2013), "The role of non-linear dynamic soil-foundation interaction on the seismic response of structures", Bull. Earthq. Eng., 12, 1157-1176. https://doi.org/10.1007/s10518-013-9457-0.
  137. Pecker, A., Paolucci, R., Chatzigogos, C.T., Correia, A.A.S. and Figini, R. (2014), "The role of non-linear dynamic soil-foundation interaction on the seismic response of structures", Bull. Earthq. Eng., 12, 1157-1176. https://doi.org/10.1007/s10518-013-9457-0.
  138. Piro, A., de Silva, F., Parisi, F., Scotto di Santolo, A. and Silvestri, F. (2020), "Effects of soil-foundation-structure interaction on fundamental frequency and radiation damping ratio of historical masonry building sub-structures", Bull. Earthq. Eng., 18, 1187-1212. https://doi.org/10.1007/s10518-019-00748-4.
  139. Pisano, F. and Jeremic, B. (2014), "Simulating stiffness degradation and damping in soils via a simple visco-elastic-plastic model", Soil Dyn. Earthq. Eng., 63, 98-109. https://doi.org/10.1016/j.soildyn.2014.02.014.
  140. Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D. and Modaressi, A. (2008), "Numerical simulation of dynamic soil-structure interaction in shaking table testing", Soil Dyn. Earthq. Eng., 28(6), 453-467. https://doi.org/10.1016/J.SOILDYN.2007.07.011.
  141. Pitilakis, K., Crowley, H. and Kaynia, A.M. (2014), SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk: Buildings, Lifelines, Transportation Networks and Critical Facilities, Springer Dordrecht, Dordrecht, Netherlands.
  142. Pitilakis, K., Karapetrou, S. and Fotopoulou, S. (2014), "Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings", Bull. Earthq. Eng., 12, 1755-1776. https://doi.org/10.1007/s10518-013-9575-8.
  143. Pitilakis, K., Manakou, M., Rupakhety, R. and Olafsson, S. (2019), "Soil-structure interaction (SSI) effects in earthquake engineering practice", Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjornsson, Springer International Publishing, Cham, Switzerland.
  144. Plevris, V., Kremmyda, G. and Fahjan, Y. (2017), "Performance-based seismic design of concrete structures and infrastructures", Performance-Based Seismic Design of Concrete Structures and Infrastructures, IGI Global, Hershey, PA, USA.
  145. Porter, K. (2015), "Beginner's guide to fragility, vulnerability, and risk", Encycl. Earthq. Eng., 2015, 235-260. https://doi.org/10.1007/978-3-642-35344-4_256.
  146. Pratesi, F., Sorace, S. and Terenzi, G. (2014), "Analysis and mitigation of seismic pounding of a slender R/C bell tower", Eng. Struct., 71, 23-34. https://doi.org/10.1016/J.ENGSTRUCT.2014.04.006.
  147. Rachedi, M., Matallah, M. and Kotronis, P. (2021), "Seismic behavior and risk assessment of an existing bridge considering soil-structure interaction using artificial neural networks", Eng. Struct., 232, 111800. https://doi.org/10.1016/j.engstruct.2020.111800.
  148. Radmard Rahmani, H. (2019), Artificial Intelligence Approach for Seismic Control of Structures, Doctoral Dissertation, aculty of Civil and Environmental Engineering, Institute for Structural Mechanics (ISM), Bauhaus-Universitat Weimar, Weimar, Germany.
  149. Ragni, L., Cardone, D., Conte, N., Dall'Asta, A., Di Cesare, A., Flora, A., Leccese, G., Micozzi, F. and Ponzo, F. (2018), "Modelling and seismic response analysis of italian code-conforming base-isolated buildings", J. Earthq. Eng., 22, 1-33. https://doi.org/10.1080/13632469.2018.1527263.
  150. Rainieri, C. and Fabbrocino, G. (2011), "Operational modal analysis for the characterization of heritage structures", Geofizika, 28, 109-126.
  151. Ramadan, O.M.O., Mehanny, S.S.F. and Kotb, A.A.M. (2020), "Assessment of seismic vulnerability of continuous bridges considering soil-structure interaction and wave passage effects", Eng. Struct., 206, 110161. https://doi.org/10.1016/j.engstruct.2019.110161.
  152. Rayamajhi, D., Tamura, S., Khosravi, M., Boulanger, R.W., Wilson, D.W., Ashford, S.A. and Olgun, C.G. (2015), "Dynamic centrifuge tests to evaluate reinforcing mechanisms of soil-cement columns in liquefiable sand", J. Geotech. Geoenviron. Engi., 141(6), 4015015. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001298.
  153. Saingam, P., Sutcu, F., Terazawa, Y., Celik, O. and Takeuchi, T. (2021), "Seismic retrofit of rc buildings with viscous dampers and elastic steel frames including effect of composite behavior", J. Struct. Eng., 67(B), 1-12.
  154. Schwan, L., Boutin, C., Padron, L.A., Dietz, M.S., Bard, P.Y. and Taylor, C. (2016), "Site-city interaction: Theoretical, numerical and experimental crossed-analysis", Geophys. J. Int., 205(2), 1006-1031. https://doi.org/10.1093/gji/ggw049.
  155. Semblat, J.F. and Pecker, A. (2009), Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction Works, IUSS Press, Bologna, Italy,
  156. Semblat, J.F., Kham, M. and Bard, P.Y. (2008), "Seismic-wave propagation in alluvial basins and influence of site-city interaction", Bull. Seismol. Soc. Am., 98(6), 2665-2678. https://doi.org/10.1785/0120080093.
  157. Sextos, A., de Risi, R., Pagliaroli, A., Foti, S., Passeri, F., Ausilio, E., Cairo, R., Capatti, M.C., Chiabrando, F., Chiaradonna, A., Dashti, S., de Silva, F., Dezi, F., Durante, M.G., Giallini, S., Lanzo, G., Sica, S., Simonelli, A.L. and Zimmaro, P. (2018), "Local site effects and incremental damage of buildings during the 2016 Central Italy earthquake sequence", Earthq. Spectra, 34(4), 1639-1669. https://doi.org/10.1193/100317EQS194M.
  158. Sextos, A., Mylonakis, G. and Mylona, E.K. (2015), "Rotational excitation of bridges supported on pile groups in soft or liquefiable soil deposits", Comput. Struct., 155, 54-66. https://doi.org/10.1016/j.compstruct.2015.02.013.
  159. Shackelford, C.D. (2005), Fundamentals of Soil Behavior, 3rd Edition, John Wiley & Sons Inc., Hoboken, NJ, USA.
  160. Shahbazi, M., Cerato, A., El Naggar, M. and Elgamal, A.W. (2020), "Evaluation of seismic soil-structure interaction of full-scale grouped helical piles in dense sand", Int. J. Geomech., 20, 04020228. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001876.
  161. Shaik, K.A. and Chandradhara, G.P. (2022), "Soil structure interaction studies on Krishnaraja Sagara Bridge, Mysuru", Mater. Today: Proc., 52, 549-555. https://doi.org/10.1016/j.matpr.2021.09.496.
  162. Shi, X., Song, L.L., Guo, T. and Pan, Z.H. (2022), "Seismic design of self-centering bridge piers considering soil-structure interaction", Struct., 43, 1819-1833. https://doi.org/10.1016/j.istruc.2022.07.055.
  163. Sigdel, L.D., Lu, M., Al-qarawi, A., Leo, C.J., Liyanapathirana, S. and Hu, P. (2023), "Application of engineered compressible inclusions to mitigating soil-structure interaction issues in integral bridge abutments", J. Rock Mech. Geotech. Eng., 15(8), 2132-2146. https://doi.org/10.1016/j.jrmge.2022.12.033.
  164. Skrekas, P., Giaralis, A. and Sextos, A. (2019), "Probabilistic seismic risk assessment of adjacent colliding R/C inelastic structures accounting for record-to-record variability", The 4th Hellenic Conference of Earthquake Engineering and Engineering Seismology, Athens, Greece, September.
  165. Soneji, B.B. and Jangid, R.S. (2006), "Effectiveness of seismic isolation for cable-stayed bridges", Int. J. Struct. Stab. Dyn., 6(1), 77-96. https://doi.org/10.1142/S0219455406001836.
  166. Soni, D.P., Mistry, B.B., Jangid, R.S. and Panchal, V.R. (2011), "Seismic response of the double variable frequency pendulum isolator", Struct. Control Health Monit., 18(4), 450-470. https://doi.org/10.1002/stc.384.
  167. Sorace, S. and Terenzi, G. (2001), "Non-linear dynamic modeling and design procedure of FV spring-dampers for base isolation", Eng. Struct., 23, 1556-1567. https://doi.org/10.1016/S0141-0296(01)00063-3.
  168. Souri, M., Khosravifar, A., Dickenson, S., McCullough, N. and Schlechter, S. (2022), "Effects of long duration earthquakes on the interaction of inertial and liquefaction-induced kinematic demands on pile-supported wharves", Soil Dyn. Earthq. Eng., 154, 107155. https://doi.org/10.1016/J.SOILDYN.2022.107155.
  169. Stewart, J., Afshari, K. and Hashash, Y. (2014), "Guidelines for performing hazard-consistent one-dimensional ground response analysis for ground motion prediction", PEER Rep., 16, 117.
  170. Sugano, S. (1996), "State-of-the-art in techniques for rehabeitation of buildings", Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  171. Sun, J., Nagashima, F., Kawase, H., Matsushima, S. and Baoyintu (2021), "Simulation of building damage distribution in downtown Mashiki, Kumamoto, Japan caused by the 2016 Kumamoto earthquake based on site-specific ground motions and nonlinear structural analyses", Bull. Earthq. Eng., 19(9), 3491-3521. https://doi.org/10.1007/s10518-021-01119-8.
  172. Tabatabaiefar, H.R. and Fatahi, B. (2014), "Idealisation of soil-structure system to determine inelastic seismic response of midrise building frames", Soil Dyn. Earthq. Eng., 66, 339-351. https://doi.org/10.1016/J.SOILDYN.2014.08.007.
  173. Tabatabaiefar, H.R., Fatahi, B. and Samali, B. (2016), "Seismic behaviour of building frames considering dynamic soil-structure interaction", Int. J. Geomech., 13(4), 409-420. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000231.
  174. Taborda, R. (2010), "Three-dimensional nonlinear soil and site-city effects in urban regions", Doctoral Thesis, Carnegie Mellon University, Pittsburgh, PA, USA.
  175. Taborda, R. and Bielak, J. (2011), "Full 3D integration of site-city effects in regional scale earthquake simulations", Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, July.
  176. Takewaki, I. (2009), Building Control with Passive Dampers: Optimal Performance-Based Design for Earthquakes, John Wiley & Sons Inc., Hoboken, NJ, USA.
  177. Tombari, A., Zentner, I. and Cacciola, P. (2016), "Sensitivity of the stochastic response of structures coupled with vibrating barriers", Probabl. Eng. Mech., 44, 183-193. https://doi.org/10.1016/J.PROBENGMECH.2015.11.002.
  178. Tomeo, R., Bilotta, A., Pitilakis, D. and Nigro, E. (2017), "Soil-structure interaction effects on the seismic performances of reinforced concrete moment resisting frames", Procedia Eng., 199, 230-235. https://doi.org/10.1016/j.proeng.2017.09.006.
  179. Tonyali, Z. and Ates, S. (2018), "The coupling finite-boundary element method for soil-structure interaction under spatially varying ground motion", J. Struct. Eng. Appl. Mech., 1, 6-21. https://doi.org/10.31462/jseam.2018.01006021.
  180. Towhata, I. (2021), Geotechnical Earthquake Engineering, Springer Berlin, Heidelberg, Germany.
  181. Trombetta, N., Mason, B., Hutchinson, T., Zupan, J., Bray, J. and Kutter, B. (2014), "Nonlinear soil-foundation-structure and structure-soil-structure interaction: Centrifuge test observations", J. Geotech. Geoenviron. Eng., 140, 4013057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001074.
  182. Tsiavos, A., Eeri, M., Sextos, A., Stavridis, A., Dietz, M., Dihoru, L. and Alexander, N.A. (2021), "Large-scale experimental investigation of a low-1 cost PVC 'sand-wich' (PVC-s) seismic isolation 2 for developing countries", Earthq. Spectra, 36(4), 1886-1911.
  183. Tsipianitis, A., Tsompanakis, Y. and Psarropoulos, P.N. (2020), "Impact of dynamic soil-structure interaction on the response of liquid-storage tanks", Front. Built Environ., 6, 534524. https://doi.org/10.3389/fbuil.2020.00140.
  184. Tsogka, C. and Wirgin, A. (2003), "Simulation of seismic response in an idealized city", Soil Dyn. Earthq. Eng., 23(5), 391-402. https://doi.org/10.1016/S0267-7261(03)00017-4.
  185. Ungureanu, B., Guenneau, S., Achaoui, Y., Diatta, A., Farhat, M., Hutridurga, H., Craster, R.V, Enoch, S. and Brule, S. (2019), "The influence of building interactions on seismic and elastic body waves", EPJ Appl. Metamat., 6, 18. https://doi.org/10.1051/epjam/2019015.
  186. Vamvatsikos, D., Kazantzi, A.K. and Aschheim, M.A. (2016), "Performance-based seismic design: Avant-garde and code-compatible approaches", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng., 2(2), C4015008. https://doi.org/10.1061/ajrua6.0000853.
  187. Veiskarami, M., Bahar, A. and Zandi Lak, E. (2015), "Dynamic earth pressure on rigid retaining walls induced by a neighboring machine foundation, by the meshless local Petrov-Galerkin method", Earthq. Eng. Eng. Vib., 14(4), 647-661. https://doi.org/10.1007/s11803-015-0051-0.
  188. Vicencio, F. and Alexander, N. (2018), "Dynamic interaction between adjacent buildings through nonlinear soil during earthquakes", Soil Dyn. Earthq. Eng., 108, 130-141. https://doi.org/10.1016/j.soildyn.2017.11.031.
  189. Vicencio, F. and Alexander, N.A. (2019), "A parametric study on the effect of rotational ground motions on building structural responses", Soil Dyn. Earthq. Eng., 118, 191-206. https://doi.org/10.1016/J.SOILDYN.2018.12.022.
  190. Vicencio, F., Alexander, N.A. and Saavedra Flores, E.I. (2023), "A state-of-the-Art review on structure-soil-structure interaction (SSSI) and site-city interactions (SCI)", Struct., 56, 105002. https://doi.org/10.1016/j.istruc.2023.105002.
  191. Wang, G., Del Rey Castillo, E., Wotherspoon, L. and Ingham, J.M. (2021), "Performance-based seismic assessment of an historic high-rise masonry building considering soil-structure interaction", Struct., 32, 38-53. https://doi.org/10.1016/j.istruc.2021.02.060.
  192. Wang, H., Yang, H., Feng, Y. and Jeremic, B.J. (2021), "Modeling and simulation of earthquake soil structure interaction excited by inclined seismic waves", Soil Dyn. Earthq. Eng., 146, 106720. https://doi.org/10.1016/j.soildyn.2021.106720.
  193. Wang, H.F. and Zhang, R.L. (2021), "Dynamic structure-soil-structure interaction of piled high-rise buildings under earthquake excitations I: Influence on dynamic response", Lat. Am. J. Solids Struct., 18(3), e357. https://doi.org/10.1590/1679-78256223.
  194. Wang, J., Guo, T. and Du, Z. (2022), "Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems", J. Build. Eng., 52, 104454. https://doi.org/10.1016/j.jobe.2022.104454.
  195. Wang, X., Zhou, Q., Zhu, K., Shi, L., Li, X. and Wang, H. (2017), "Analysis of seismic soil-structure interaction for a nuclear power plant (HTR-10)", Sci. Technol. Nucl. Install., 2017, 2358403. https://doi.org/10.1155/2017/2358403.
  196. Wang, Z. and Wang, P. (2013), "A new approach for reliability analysis with time-variant performance characteristics", Reliab. Eng. Syst. Saf., 115, 70-81. https://doi.org/10.1016/j.ress.2013.02.017.
  197. Wani, F.M., Vemuri, J., Rajaram, C. and Babu, R.D.V. (2022), "Effect of soil structure interaction on the dynamic response of reinforced concrete structures", Nat. Hazards Res., 2(4), 304-315. https://doi.org/10.1016/j.nhres.2022.11.002.
  198. Wei Jing, S.T. (2023), "Seismic performance evaluation of a base-isolated steel liquid storage tank with limiting-devices considering soil-structure interaction", Arch. Civil Eng., 69(4), 635-661. https://doi.org/10.24425/ace.2023.147681.
  199. Wu, W.H. and Chen, C.Y. (2002), "Simplified soil-structure interaction analysis using efficient lumped-parameter models for soil", Soils Found., 42, 41-52. https://doi.org/10.3208/sandf.42.6_41.
  200. Xiong, W., Jiang, L.Z. and Li, Y.Z. (2016), "Influence of soil-structure interaction (structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: Experimental observation and analytical verification", Bull. Earthq. Eng., 14(1), 139-160. https://doi.org/10.1007/s10518-015-9814-2.
  201. Xu, C., Dou, P., Du, X., El Naggar, M.H., Miyajima, M. and Chen, S. (2020), "Seismic performance of pile group-structure system in liquefiable and non-liquefiable soil from large-scale shake table tests", Soil Dyn. Earthq. Eng., 138, 106299. https://doi.org/10.1016/j.soildyn.2020.106299.
  202. Xu, L., Xie, X. and Li, Z. (2018), "A self-centering brace with superior energy dissipation capability: Development and experimental study", Smart Mater. Struct., 27, 095017. https://doi.org/10.1088/1361-665X/aad5b0.
  203. Xu, Z.D. (2007), "Earthquake mitigation study on viscoelastic dampers for reinforced concrete structures", J. Vib. Control, 13(1), 29-43. https://doi.org/10.1177/1077546306068058.
  204. Yang, J., Jing, H. and Li, P. (2022), "Shaking table test and simulation of 12-story buildings with metallic dampers located on soft soil", J. Build. Eng., 46, 103585. https://doi.org/10.1016/J.JOBE.2021.103585.
  205. Yang, J., Lu, Z. and Li, P. (2020), "Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction", Eng. Struct., 220, 110960. https://doi.org/10.1016/j.engstruct.2020.110960.
  206. Zain, M., Prasittisopin, L., Mehmood, T., Ngamkhanong, C., Keawsawasvong, S. and Thongchom, C. (2024), "A novel framework for effective structural vulnerability assessment of tubular structures using machine learning algorithms (GA and ANN) for hybrid simulations", Nonlinear Eng., 13(1), 20220365. https://doi.org/10.1515/nleng-2022-0365.
  207. Zhang, X. and Lu, J.F. (2013), "A wavenumber domain boundary element method model for the simulation of vibration isolation by periodic pile rows", Eng. Anal. Bound. Elem., 37(7), 1059-1073. https://doi.org/10.1016/j.enganabound.2013.04.004.
  208. Zhang, X., Ji, Z., Guo, J., Gao, H. and Wang, Z. (2023), "Seismic pile-soil interaction analysis based on a unified thixotropic fluid model in liquefiable soil", Sustainab., 15(6), 5345. https://doi.org/10.3390/su15065345.
  209. Zheng, Y., McCartney, J.S., Shing, P.B. and Fox, P.J. (2019), "Physical model tests of half-scale geosynthetic reinforced soil bridge abutments. II: Dynamic loading", J. Geotech. Geoenviron. Eng., 145(11), 04019095. https://doi.org/10.1061/(asce)gt.1943-5606.0002158.