• Title/Summary/Keyword: multi-hazard approaches

Search Result 6, Processing Time 0.023 seconds

Multi-hazard vulnerability modeling: an example of wind and rain vulnerability of mid/high-rise buildings during hurricane events

  • Zhuoxuan Wei;Jean-Paul Pinelli;Kurtis Gurley;Shahid Hamid
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.355-366
    • /
    • 2024
  • Severe natural multi-hazard events can cause damage to infrastructure and economic losses of billions of dollars. The challenges of modeling these losses include dependency between hazards, cause and sequence of loss, and lack of available data. This paper presents and explores multi-hazard loss modeling in the context of the combined wind and rain vulnerability of mid/high-rise buildings during hurricane events. A component-based probabilistic vulnerability model provides the framework to test and contrast two different approaches to treat the multi-hazards: In one, the wind and rain hazard models are both decoupled from the vulnerability model. In the other, only the wind hazard is decoupled, while the rain hazard model is embedded into the vulnerability model. The paper presents the mathematical and conceptual development of each approach, example outputs from each for the same scenario, and a discussion of weaknesses and strengths of each approach.

Advancing Construction Safety Through a Combination of Immersive Technologies and Physiological Monitoring - A Systematic Review.

  • Francis Xavier Duorinaah;Samuel Olatunbosun;Jeong-Hun Won;MinKoo Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.285-292
    • /
    • 2024
  • Physiological devices and immersive technologies are crucial innovations being implemented for construction safety. Physiological devices provide insights into the wellbeing of workers while immersive technologies have a potential to simulate or enhance construction environments. These two technologies present numerous benefits for construction safety and have been extensively implemented in various dimensions. In addition to the individual benefits of these two technologies, combining them presents more opportunities for construction safety research and numerous studies have been conducted using this approach. However, despite promising results achieved by studies which have used this technological combination, no review has been conducted to summarize the findings of these studies. This review therefore summarizes studies that have combined immersive technologies with physiological monitoring for construction safety. A systematic approach is employed, and 24 articles are reviewed. This review highlights four safety aspects which have been explored using a combination of immersive technologies and physiological monitoring. These aspects are (1) Safety training and evaluation (2) Hazard identification (3) Attention assessment and (4) Cognitive strain assessment. In addition, there are three main directions for future research. (1) Future studies should explore other types of immersive technologies such as immersive audio (2) Physiological reactions to hazard exposure should be studied and (3) More multi-physiological approaches should be adopted.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Response transformation factors for deterministic-based and reliability-based seismic design

  • Bojorquez, Eden;Bojorquez, Juan;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Velazquez-Dimas, Juan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.755-773
    • /
    • 2013
  • One of the main requirements of the seismic design codes must be its easy application by structural engineers. The use of practically-applicable models or simplified models as single-degree-of-freedom (SDOF) systems is a good alternative to achieve this condition. In this study, deterministic and probabilistic response transformation factors are obtained to evaluate the response in terms of maximum ductility and maximum interstory drifts of multi-degree-of-freedom (MDOF) systems based on the response of equivalent SDOF systems. For this aim, five steel frames designed with the Mexican City Building Code (MCBC) as well as their corresponding equivalent SDOF systems (which represent the characteristics of the frames) are analyzed. Both structural systems are subjected to ground motions records. For the MDOF and the simplified systems, incremental dynamic analyses IDAs are developed in first place, then, structural demand hazard curves are obtained. The ratio between the IDAs curves corresponding to the MDOF systems and the curves corresponding to the simplified models are used to obtain deterministic response transformation factors. On the other hand, demand hazard curves are used to calculate probabilistic response transformation factors. It was found that both approaches give place to similar results.

A state-of-the-art review on earthquake soil-structure interaction including dynamic cross interaction (DCI) and site city interactions (SCI)

  • Karan Singhai;Neeraj Tiwari
    • Earthquakes and Structures
    • /
    • v.27 no.5
    • /
    • pp.361-383
    • /
    • 2024
  • Earthquake soil-structure interaction (ESSI) is the dynamic interaction between seismic waves, soil layers underlying structures, and the structures themselves during earthquakes, which affects the structures' response. This relationship impacts foundation behaviour, soil amplification, energy dissipation, nonlinear effects, resonance phenomena, and earthquake design considerations. Comprehending ESSI is crucial for evaluating structural performance, creating resilient structures and executing efficient seismic retrofitting procedures in earthquake-prone areas. Present seismic standards do not account for interbuilding dynamic interactions through the soil, and hence the associated seismic risk is ignored. However, due to recent population growth in cities and rising land costs, there has been a rise in city building surface density, resulting in buildings being more closely spaced. The seismic analysis of a city with high building surface density is very complex due to detailed requirement material and geometrical properties of historical as well as present structures. The construction of new building adjacent to preexisting building can either reduce or increase its structural response. This phenomenon of dynamic interaction between existing and newly built buildings is known as dynamic cross interaction (DCI) whereas site-city interactions (SCI) describe the effects of a group of structures on the overall seismic response of the site or city. This study covers the entire literature review of the pioneer findings in the field of ESSI considering different types of structures, mitigation techniques, ESSI modelling techniques, comparison between experimental and numerical techniques for earthquake analysis and latest concepts related to ESSI, DCI and SCI further the research gaps and future scope is also discussed.