DOI QR코드

DOI QR Code

Atractylodes Lancea and Its Constituent, Atractylodin, Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease via AMPK Activation

  • Ga Yeon Song (Department of Pharmacy, Kangwon National University) ;
  • Sun Myoung Kim (Department of Pharmacy, Kangwon National University) ;
  • Seungil Back (Department of Pharmacy, Kangwon National University) ;
  • Seung-Bo Yang (Department of Korean Internal Medicine, College of Korean Medicine, Gachon University) ;
  • Yoon Mee Yang (Department of Pharmacy, Kangwon National University)
  • Received : 2024.05.22
  • Accepted : 2024.07.24
  • Published : 2024.11.01

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD), which encompasses a spectrum of conditions ranging from simple steatosis to hepatocellular carcinoma, is a growing global health concern associated with insulin resistance. Since there are limited treatment options for MASLD, this study investigated the therapeutic potential of Atractylodes lancea, a traditional herbal remedy for digestive disorders in East Asia, and its principal component, atractylodin, in treating MASLD. Following 8 weeks of high-fat diet (HFD) feeding, mice received oral doses of 30, 60, or 120 mg/kg of Atractylodes lancea. In HFD-fed mice, Atractylodes lancea treatment reduced the body weight; serum triglyceride, total cholesterol, and alanine aminotransferase levels; and hepatic lipid content. Furthermore, Atractylodes lancea significantly ameliorated fasting serum glucose, fasting serum insulin, and homeostatic model assessment of insulin resistance levels in response to HFD. Additionally, a glucose tolerance test demonstrated improved glucose homeostasis. Treatment with 5 or 10 mg/kg atractylodin also resulted in anti-obesity, anti-steatosis, and glucose-lowering effects. Atractylodin treatment resulted in the downregulation of key lipogenic genes (Srebf1, Fasn, Scd2, and Dgat2) and the upregulation of genes regulated by peroxisome proliferator-activated receptor-α. Notably, the molecular docking model suggested a robust binding affinity between atractylodin and AMP-activated protein kinase (AMPK). Atractylodin activated AMPK, which contributed to SREBP1c regulation. In conclusion, our results revealed that Atractylodes lancea and atractylodin activated the AMPK signaling pathway, leading to improvements in HFD-induced obesity, fatty liver, and glucose intolerance. This study suggests that the phytochemical, atractylodin, can be a treatment option for MASLD.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2022R1G1A1003601 to S.B.Y. and RS-2023-00210489, RS-2023-00301850 to Y.M.Y.). This research was supported by Korean Fund for Regenerative Medicine (KFRM) funded by Ministry of Science and ICT, and Ministry of Health & Welfare (RS-2022-00070363 to Y.M.Y.). This research was supported by Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2022R1A6C101A739).

References

  1. Abbott, M. J., Edelman, A. M. and Turcotte, L. P. (2009) CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1724-R1732.
  2. Armstrong, M. J., Gaunt, P., Aithal, G. P., Barton, D., Hull, D., Parker, R., Hazlehurst, J. M., Guo, K.; LEAN trial team; Abouda, G., Aldersley, M. A., Stocken, D., Gough, S. C., Tomlinson, J. W., Brown, R. M., Hubscher, S. G. and Newsome, P. N. (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679-690.
  3. Bai, Y., Zhao, Y. H., Xu, J. Y., Yu, X. Z., Hu, Y. X. and Zhao, Z. Q. (2017) Atractylodin induces myosin light chain phosphorylation and promotes gastric emptying through ghrelin receptor. Evid. Based Complement. Alternat. Med. 2017, 2186798.
  4. Bae, E. J., Yang, Y. M., Kim, J. W. and Kim, S. G. (2007) Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway. Hepatology 46, 730-739.
  5. Boudaba, N., Marion, A., Huet, C., Pierre, R., Viollet, B. and Foretz, M. (2018) AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. EBioMedicine 28, 194-209.
  6. Cokorinos, E. C., Delmore, J., Reyes, A. R., Albuquerque, B., Kjobsted, R., Jorgensen, N. O., Tran, J. L., Jatkar, A., Cialdea, K., Esquejo, R. M., Meissen, J., Calabrese, M. F., Cordes, J., Moccia, R., Tess, D., Salatto, C. T., Coskran, T. M., Opsahl, A. C., Flynn, D., Blatnik, M., Li, W., Kindt, E., Foretz, M., Viollet, B., Ward, J., Kurumbail, R. G., Kalgutkar, A. S., Wojtaszewski, J. F. P., Cameron, K. O. and Miller, R. A. (2017) Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147-1159.e10.
  7. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S. and Frevert, E. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403-416.
  8. Feige, J. N., Lagouge, M., Canto, C., Strehle, A., Houten, S. M., Milne, J. C., Lambert, P. D., Mataki, C., Elliott, P. J. and Auwerx, J. (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358.
  9. Finck, B. N., Gropler, M. C., Chen, Z. J., Leone, T. C., Croce, M. A., Harris, T. E., Lawrence, J. C. and Kelly, D. P. (2006) Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 4, 199-210.
  10. Fujitsuka, N., Asakawa, A., Morinaga, A., Amitani, M. S., Amitani, H., Katsuura, G., Sawada, Y., Sudo, Y., Uezono, Y., Mochiki, E., Sakata, I., Sakai, T., Hanazaki, K., Yada, T., Yakabi, K., Sakuma, E., Ueki, T., Niijima, A., Nakagawa, K., Okubo, N., Takeda, H., Asaka, M. and Inui, A. (2016) Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol. Psychiatry 21, 1613-1623.
  11. Galic, S., Loh, K., Murray-Segal, L., Steinberg, G. R., Andrews, Z. B. and Kemp, B. E. (2018) AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife 7, e32656.
  12. Hardie, D. G. (2011) Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc. Nutr. Soc. 70, 92-99.
  13. Harrison, S. A., Bedossa, P., Guy, C. D., Schattenberg, J. M., Loomba, R., Taub, R., Labriola, D., Moussa, S. E., Neff, G. W., Rinella, M. E., Anstee, Q. M., Abdelmalek, M. F., Younossi, Z., Baum, S. J., Francque, S., Charlton, M. R., Newsome, P. N., Lanthier, N., Schiefke, I., Mangia, A., Pericas, J. M., Patil, R., Sanyal, A. J., Noureddin, M., Bansal, M. B., Alkhouri, N., Castera, L., Rudraraju, M. and Ratziu, V.; MAESTRO-NASH Investigators (2024) A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497-509.
  14. He, K., Li, J., Xi, W., Ge, J., Sun, J. and Jing, Z. (2022) Dapagliflozin for nonalcoholic fatty liver disease: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 185, 109791.
  15. He, X., Li, Y., Deng, X., Xiao, X. and Zeng, J. (2023) Integrative evidence construction for resveratrol treatment of nonalcoholic fatty liver disease: preclinical and clinical meta-analyses. Front. Pharmacol. 14, 1230783.
  16. Hong, D. G., Song, G. Y., Eom, C. B., Ahn, J. H., Kim, S. M., Shim, A., Han, Y. H., Roh, Y. S., Han, C. Y., Bae, E. J., Ko, H. J. and Yang, Y. M. (2022) Loss of ERdj5 exacerbates oxidative stress in mice with alcoholic liver disease via suppressing Nrf2. Free Radic. Biol. Med. 184, 42-52.
  17. Hossen, M. J., Amin, A., Fu, X. Q., Chou, J. Y., Wu, J. Y., Wang, X. Q., Chen, Y. J., Wu, Y., Li, J., Yin, C. L., Liang, C., Chou, G. X. and Yu, Z. L. (2021) The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-kappaB signaling pathway inhibition. J. Ethnopharmacol. 277, 114183.
  18. Hutchison, A. L., Tavaglione, F., Romeo, S. and Charlton, M. (2023) Endocrine aspects of metabolic dysfunction associated steatotic liver disease (MASLD): beyond insulin resistance. J. Hepatol. 79, 1524-1541.
  19. Hwahng, S. H., Ki, S. H., Bae, E. J., Kim, H. E. and Kim, S. G. (2009) Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 49, 1913-1925.
  20. Hwang, S. and Yang, Y. M. (2021) Exosomal microRNAs as diagnostic and therapeutic biomarkers in non-malignant liver diseases. Arch. Pharm. Res. 44, 574-587.
  21. Inoue, E. and Yamauchi, J. (2006) AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transcription factor. Biochem. Biophys. Res. Commun. 351, 793-799.
  22. Ishii, T., Okuyama, T., Noguchi, N., Nishidono, Y., Okumura, T., Kaibori, M., Tanaka, K., Terabayashi, S., Ikeya, Y. and Nishizawa, M. (2020) Antiinflammatory constituents of Atractylodes chinensis rhizome improve glomerular lesions in immunoglobulin A nephropathy model mice. J. Nat. Med. 74, 51-64.
  23. Jiao, P., Tseng-Crank, J., Corneliusen, B., Yimam, M., Hodges, M., Hong, M., Maurseth, C., Oh, M., Kim, H., Chu, M. and Jia, Q. (2014) Lipase inhibition and antiobesity effect of Atractylodes lancea. Planta Med. 80, 577-582.
  24. Jun, X., Fu, P., Lei, Y. and Cheng, P. (2018) Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin. Med. 13, 59.
  25. Kim, S. M., Song, G. Y., Shim, A., Lee, J. H., Eom, C. B., Liu, C., Yang, Y. M. and Seki, E. (2022) Hyaluronan synthase 2, a target of miR-200c, promotes carbon tetrachloride-induced acute and chronic liver inflammation via regulation of CCL3 and CCL4. Exp. Mol. Med. 54, 739-752.
  26. Kimura, Y. and Sumiyoshi, M. (2012) Effects of an Atractylodes lancea rhizome extract and a volatile component beta-eudesmol on gastrointestinal motility in mice. J. Ethnopharmacol. 141, 530-536.
  27. Kulma, I., Panrit, L., Plengsuriyakarn, T., Chaijaroenkul, W., Warathumpitak, S. and Na-Bangchang, K. (2021) A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects. BMC Complement Med. Ther. 21, 61.
  28. Lee, H. S., Heo, C. U., Song, Y. H., Lee, K. and Choi, C. I. (2023) Naringin promotes fat browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Arch. Pharm. Res. 46, 192-205.
  29. Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y., Gao, B., Wierzbicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A. and Zang, M. (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388.
  30. Loomba, R., Abdelmalek, M. F., Armstrong, M. J., Jara, M., Kjaer, M. S., Krarup, N., Lawitz, E., Ratziu, V., Sanyal, A. J., Schattenberg, J. M. and Newsome, P. N.; NN9931-4492 investigators (2023) Semaglutide 2.4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 511-522.
  31. Lyu, Z., Ji, X., Chen, G. and An, B. (2019) Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int. Immunopharmacol. 72, 348-357.
  32. Nakai, Y., Kido, T., Hashimoto, K., Kase, Y., Sakakibara, I., Higuchi, M. and Sasaki, H. (2002) Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying. J. Ethnopharmacol. 84, 51-55.
  33. Park, Y. J., Seo, M. G., Cominguez, D. C., Han, I. and An, H. J. (2021) Atractylodes chinensis water extract ameliorates obesity via promotion of the SIRT1/AMPK expression in high-fat diet-induced obese mice. Nutrients 13, 2992.
  34. Pollard, A. E., Martins, L., Muckett, P. J., Khadayate, S., Bornot, A., Clausen, M., Admyre, T., Bjursell, M., Fiadeiro, R., Wilson, L., Whilding, C., Kotiadis, V. N., Duchen, M. R., Sutton, D., Penfold, L., Sardini, A., Bohlooly, Y. M., Smith, D. M., Read, J. A., Snowden, M. A., Woods, A. and Carling, D. (2019) AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab. 1, 340-349.
  35. Price, N. L., Gomes, A. P., Ling, A. J. Y., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J. G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P., Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A. and Sinclair, D. A. (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690.
  36. Sato, S., Jung, H. M., Nakagawa, T., Pawlosky, R., Takeshima, T., Lee, W. R., Sakiyama, H., Laxman, S., Wynn, R. M., Tu, B. P., MacMillan, J. B., De Brabander, J. K., Veech, R. L. and Uyeda, K. (2016) Metabolite regulation of nuclear localization of carbohydrate-response element-binding protein (ChREBP): role of AMP as an allosteric inhibitor. J. Biol. Chem. 291, 10515-10527.
  37. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U. S. A. 101, 3329-3335.
  38. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646.
  39. Shin, Y. S., Hwang, D. B., Won, D. H., Kim, S. Y., Kim, C., Park, J. W., Jeon, Y. and Yun, J. W. (2023) The Wnt/beta-catenin signaling pathway plays a role in drug-induced liver injury by regulating cytochrome P450 2E1 expression. Toxicol. Res. 39, 443-453.
  40. Tang, X., Shi, Y., Du, J., Hu, K., Zhou, T., Chen, L., Zhang, Y., Li, F., Zhang, H., Liebe, R., Meyer, C., Dooley, S., Zhu, Z., Weng, H. L., Jia, J. and Huang, T. (2022) Clinical outcome of non-alcoholic fatty liver disease: an 11-year follow-up study. BMJ Open 12, e054891.
  41. Woods, A., Williams, J. R., Muckett, P. J., Mayer, F. V., Liljevald, M., Bohlooly, Y. M. and Carling, D. (2017) Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 18, 3043-3051.
  42. Xie, M., Zhang, D., Dyck, J. R., Li, Y., Zhang, H., Morishima, M., Mann, D. L., Taffet, G. E., Baldini, A., Khoury, D. S. and Schneider, M. D. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. U. S. A. 103, 17378-17383.
  43. Yang, J., Wang, Z. X., Fang, L., Li, T. S., Liu, Z. H., Pan, Y. and Kong, L. D. (2023) Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221. J. Ethnopharmacol. 300, 115688.
  44. Yang, Y. M., Noureddin, M., Liu, C., Ohashi, K., Kim, S. Y., Ramnath, D., Powell, E. E., Sweet, M. J., Roh, Y. S., Hsin, I. F., Deng, N., Liu, Z., Liang, J., Mena, E., Shouhed, D., Schwabe, R. F., Jiang, D., Lu, S. C., Noble, P. W. and Seki, E. (2019) Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci. Transl. Med. 11, eaat9284.
  45. Yang, Y. M., Wang, Z. J., Matsuda, M. and Seki, E. (2021) Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates nonalcoholic steatohepatitis in choline-deficient l-amino acid-defined diet-induced murine model. Arch. Pharm. Res. 44, 230-240.
  46. Ye, Q., Jiang, Y., Wu, D., Cai, J., Jiang, Z., Zhou, Z., Liu, L., Ling, Q., Wang, Q. and Zhao, G. (2023) Atractylodin alleviates nonalcoholic fatty liver disease by regulating Nrf2-mediated ferroptosis. Heliyon 9, e18321.
  47. Younossi, Z. M., Ratziu, V., Loomba, R., Rinella, M., Anstee, Q. M., Goodman, Z., Bedossa, P., Geier, A., Beckebaum, S., Newsome, P. N., Sheridan, D., Sheikh, M. Y., Trotter, J., Knapple, W., Lawitz, E., Abdelmalek, M. F., Kowdley, K. V., Montano-Loza, A. J., Boursier, J., Mathurin, P., Bugianesi, E., Mazzella, G., Olveira, A., Cortez-Pinto, H., Graupera, I., Orr, D., Gluud, L. L., Dufour, J. F., Shapiro, D., Campagna, J., Zaru, L., MacConell, L., Shringarpure, R., Harrison, S. and Sanyal, A. J.; REGENERATE Study Investigators (2019) Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184-2196.
  48. Yu, L., Gong, L., Wang, C., Hu, N., Tang, Y., Zheng, L., Dai, X. and Li, Y. (2020) Radix Polygoni Multiflori and its main component emodin attenuate non-alcoholic fatty liver disease in zebrafish by regulation of AMPK signaling pathway. Drug Des. Devel. Ther. 14, 1493-1506.
  49. Zhang, W. J., Zhao, Z. Y., Chang, L. K., Cao, Y., Wang, S., Kang, C. Z., Wang, H. Y., Zhou, L., Huang, L. Q. and Guo, L. P. (2021) Atractylodis Rhizoma: a review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. J. Ethnopharmacol. 266, 113415.
  50. Zhu, Y., Zhao, S., Deng, Y., Gordillo, R., Ghaben, A. L., Shao, M., Zhang, F., Xu, P., Li, Y., Cao, H., Zagnitko, O., Scott, D. A., Gupta, R. K., Xing, C., Zhang, B. B., Lin, H. V. and Scherer, P. E.(2017) Hepatic GALE regulates whole-body glucose homeostasis by modulating Tff3 expression. Diabetes 66, 2789-2799.