DOI QR코드

DOI QR Code

Translation Initiation Factor-2S2 (eIF2S2) Contributes to Cervical Carcinogenesis by Inhibiting the TGF-β/SMAD4 Signaling Pathway

  • Juthika Kundu (Lika shing applied virology institute, Department of Medical Microbiology and Immunology, University of Alberta) ;
  • Hobin Yang (College of Pharmacy, Kyungsung University) ;
  • Saerom Moon (College of Pharmacy, Duksung Women's University) ;
  • Mi Ran Byun (College of Pharmacy, Daegu Catholic University) ;
  • Young Kee Shin (Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University) ;
  • Kyoung Song (College of Pharmacy, Duksung Women's University) ;
  • Joon-Seok Choi (College of Pharmacy, Daegu Catholic University)
  • Received : 2024.01.30
  • Accepted : 2024.09.02
  • Published : 2024.11.01

Abstract

The deregulation of protein translational machinery and the oncogenic role of several translation initiation factors have been extensively investigated. This study aimed to investigate the role of eukaryotic translation initiation factor 2S2 (eIF2S2, also known as eIF2β) in cervical carcinogenesis. Immunohistochemical analysis of human cervical carcinoma tissues revealed a stage-specific increase in eIF2S2 expression. The knockdown of eIF2S2 in human cervical cancer (SiHa) cells significantly reduced growth and migration properties, whereas its overexpression demonstrated the opposite effect. Immunoprecipitation and Bimolecular fluorescence complementation (BiFC) assay confirmed the previous photo array finding of the interaction between eIF2S2 and SMAD4 to understand the tumorigenic mechanism of eIF2S2. The results indicated that the N-terminus of eIF2S2 interacts with the MH-1 domain of SMAD4. The interaction effect between eIF2S2 and SMAD4 was further evaluated. The knockdown of eIF2S2 increased SMAD4 expression in cervical cancer cells without changing SMAD4 mRNA expression, whereas transient eIF2S2 overexpression reduced SMAD4 expression. This indicates the possibility of post-translational regulation of SMAD4 expression by eIF2S2. Additionally, eIF2S2 overexpression was confirmed to weaken the expression and/or promoter activity of p15 and p27, which are SMAD4-regulated antiproliferative proteins, by reducing SMAD4 levels. Therefore, our study indicated the pro-tumorigenic role of eIF2S2, which diminishes both SMAD4 expression and function as a transcriptional factor in cervical carcinogenesis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1C1C1009883, No. 2021R1F1A1057411), as well as by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2016R1A6A1A03007648). Additionally, it received support from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (NRF-2014R1A1A).

References

  1. Ahn, W. S., Seo, M. J., Bae, S. M., Lee, J. M., Namkoong, S. E., Kim, C. K. and Kim, Y. W. (2005) Cellular process classification of human papillomavirus-16-positive SiHa cervical carcinoma cell using gene ontology. Int. J. Gynecol. Cancer 15, 94-106.
  2. Asano, K., Krishnamoorthy, T., Phan, L., Pavitt, G. D. and Hinnebusch, A. G. (1999) Conserved bipartite motifs in yeast eIF5 and eIF-2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18, 1673-1688.
  3. Bilanges, B. and Stokoe, D. (2007) Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 26, 5973-5990.
  4. Bruni, L., Diaz, M., Castellsague, X., Ferrer, E., Bosch, F. X. and de Sanjose, S. (2010) Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 202, 1789-1799.
  5. Brychtova, S., Brychta, T., Sedlakova, E. and Kolar, Z. (2004) Proto-oncogene c-myc in uterine cervix carcinogenesis. Neoplasma 51, 84-89.
  6. Chiao, P. J., Hunt, K. K., Grau, A. M., Abramian, A., Fleming, J., Zhang, W., Breslin, T., Abbruzzese, J. L. and Evans, D. B. (1999) Tumor suppressor gene Smad4/DPC4, its downstream target genes, and regulation of cell cycle. Ann. N. Y. Acad. Sci. 880, 31-37.
  7. Cone, R. W., Minson, A. C., Smith, M. R. and McDougall, J. K. (1992) Conservation of HPV-16 E6/E7 ORF sequences in a cervical carcinoma. J. Med. Virol. 37, 99-107.
  8. Das, S., Maiti, T., Das, K. and Maitra, U. (1997) Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J. Biol. Chem. 272, 31712-31718.
  9. Donze, O., Jagus, R., Koromilas, A. E., Hershey, J. W. and Sonenberg, N. (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 14, 3828-3834.
  10. Gallagher, J. W., Kubica, N., Kimball, S. R. and Jefferson, L. S. (2008) Reduced eukaryotic initiation factor 2Bepsilon-subunit expression suppresses the transformed phenotype of cells overexpressing the protein. Cancer Res. 68, 8752-8760.
  11. Gildea, J. J., Harding, M. A., Gulding, K. M. and Theodorescu, D. (2000) Transmembrane motility assay of transiently transfected cells by fluorescent cell counting and luciferase measurement. Biotechniques 29, 81-86.
  12. Heaney, J. D., Michelson, M. V., Youngren, K. K., Lam, M. Y. and Nadeau, J. H. (2009) Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum. Mol. Genet. 18, 1395-1404.
  13. Hershey, J. W. (2010) Regulation of protein synthesis and the role of eIF3 in cancer. Braz. J. Med. Biol. Res. 43, 920-930.
  14. Homma, M. K. and Homma, Y. (2005) Regulatory role of CK2 during the progression of cell cycle. Mol. Cell. Biochem. 274, 47-52.
  15. Hsu, E. M. and McNicol, P. J. (1992) Characterization of HPV-16 E6/E7 transcription in CaSki cells by quantitative PCR. Mol. Cell. Probes 6, 459-466.
  16. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. (2011) Global cancer statistics. CA Cancer J. Clin. 61, 69-90.
  17. Jones, E. E. and Wells, S. I. (2006) Cervical cancer and human papillomaviruses: inactivation of retinoblastoma and other tumor suppressor pathways. Curr. Mol. Med. 6, 795-808.
  18. Jones, J. B. and Kern, S. E. (2000) Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 28, 2363-2368.
  19. Jung, H. S., Erkin, O. C., Kwon, M. J., Kim, S. H., Jung, J. I., Oh, Y. K., Her, S. W., Ju, W., Choi, Y. L., Song, S. Y., Kim, J. K., Kim, Y. D., Shim, G. Y. and Shin, Y. K. (2011) The synergistic therapeutic effect of cisplatin with Human papillomavirus E6/E7 short interfering RNA on cervical cancer cell lines in vitro and in vivo. Int. J. Cancer 130, 1925-1936.
  20. Kloth, J. N., Kenter, G. G., Spijker, H. S., Uljee, S., Corver, W. E., Jordanova, E. S., Fleuren, G. J. and Gorter, A. (2008) Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Mod. Pathol. 21, 866-875.
  21. Kwon, M. J., Oh, E., Lee, S., Roh, M. R., Kim, S. E., Lee, Y., Choi, Y. L., In, Y. H., Park, T., Koh, S. S. and Shin, Y. K. (2009) Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One 4, e6162.
  22. Lee, J. W., Choi, J. J., Lee, K. M., Choi, C. H., Kim, T. J., Lee, J. H., Kim, B. G., Ahn, G., Song, S. Y. and Bae, D. S. (2005) eIF-4E expression is associated with histopathologic grades in cervical neoplasia. Hum. Pathol. 36, 1197-1203.
  23. Maliekal, T. T., Antony, M. L., Nair, A., Paulmurugan, R. and Karunagaran, D. (2003) Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer. Oncogene 22, 4889-4897.
  24. Malina, A., Cencic, R. and Pelletier, J. (2011) Targeting translation dependence in cancer. Oncotarget 2, 76-88.
  25. Mammas, I. N., Zafiropoulos, A. and Spandidos, D. A. (2005) Involvement of the ras genes in female genital tract cancer. Int. J. Oncol. 26, 1241-1255.
  26. Matthews-Greer, J., Caldito, G., de Benedetti, A., Herrera, G. A., Dominguez-Malagon, H., Chanona-Vilchis, J. and Turbat-Herrera, E. A. (2005) eIF4E as a marker for cervical neoplasia. Appl. Immunohistochem. Mol. Morphol. 13, 367-370.
  27. Mitra, A. B., Murty, V. V., Pratap, M., Sodhani, P. and Chaganti, R. S. (1994) ERBB2 (HER2/neu) oncogene is frequently amplified in squamous cell carcinoma of the uterine cervix. Cancer Res. 54, 637-639.
  28. Miyaki, M. and Kuroki, T. (2003) Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 306, 799-804.
  29. Rajasekaran, N., Song, K., Lee, J. H., Wei, Y., Erkin, O. C., Lee, H. and Shin, Y. K. (2021) Nuclear respiratory factor-1, a novel SMAD4 binding protein, represses TGF-beta/SMAD4 signaling by functioning as a transcriptional cofactor. Int. J. Mol. Sci. 22, 5595.
  30. Shai, A., Pitot, H. C. and Lambert, P. F. (2008) p53 Loss synergizes with estrogen and papillomaviral oncogenes to induce cervical and breast cancers. Cancer Res. 68, 2622-2631.
  31. Song, K., Lee, H. S., Jia, L., Chelakkot, C., Rajasekaran, N. and Shin, Y. K. (2022) SMAD4 controls cancer cell metabolism by regulating methylmalonic aciduria cobalamin deficiency (cbl) B type. Mol. Cells 45, 413-424.
  32. Staub, E., Grone, J., Mennerich, D., Ropcke, S., Klamann, I., Hinzmann, B., Castanos-Velez, E., Mann, B., Pilarsky, C., Brummendorf, T., Weber, B., Buhr, H. J. and Rosenthal, A. (2006) A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol. Cancer 5, 37.
  33. Suzuki, C., Garces, R. G., Edmonds, K. A., Hiller, S., Hyberts, S. G., Marintchev, A. and Wagner, G. (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc. Natl. Acad. Sci. U. S. A. 105, 3274-3279.
  34. Wan, M., Cao, X., Wu, Y., Bai, S., Wu, L., Shi, X. and Wang, N. (2002) Jab1 antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep. 3, 171-176.
  35. Wang, L. H., Kim, S. H., Lee, J. H., Choi, Y. L., Kim, Y. C., Park, T. S., Hong, Y. C., Wu, C. F. and Shin, Y. K. (2007) Inactivation of SMAD4 tumor suppressor gene during gastric carcinoma progression. Clin. Cancer Res. 13, 102-110.
  36. zur Hausen, H. (1996) Papillomavirus infections--a major cause of human cancers. Biochim. Biophys. Acta 1288, F55- F78.