과제정보
This research was supported by the MIST (Ministry of Science, ICT, Korea, under the National Program for Excellence in SW), supervised by the IITP(Institute of Information & communications Technology Planning & Evaluation) in 2024 (2019-0-01817)
참고문헌
- A. A. Ogunyemi, I. J. Diyalou, I. O. Awoyelu, K. O. Bakare, and A. O. Oluwatope, "Digital Transformation of the Textile and Fashion Design Industry in the Global South: A Scoping Review", Towards new e-Infrastructure and e-Services for Developing Countries (AFRICOMM 2022), pp. 391-413, Tallinn, Estonia, June 2023. DOI: 10.1007/978-3-031-34896-9_24.
- A. P. Periyasamy, and S. Periyasami, "Rise of Digital Fashion and Metaverse: Influence on Sustainability", Digital Economy and Sustainable Development, Vol. 1, Article 16, pp. 1-15, September 2023. DOI: 10.1007/s44265-023-00016-z
- I. Garcia-Aguilar, J. Garcia-Gonzalez, R. M. Luque-Baena, and E. Lopez-Rubio, "Automated Labeling of Training Data for Improved Object Detection in Traffic Videos by Fine-Tuned Deep Convolutional Neural Networks", Pattern Recognition Letters, Vol. 169, pp.24-32, January 2023. DOI: 10.1016/j.patrec.2023.01.015.
- J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, "Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149, June 2017. DOI: 10.1109/TPAMI.2016.2577031.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149, June 2017. DOI: 10.1109/TPAMI.2016.2577031.
- M. Hussain, "YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision", arXiv preprint arXiv:2407.02988, pp. 1-15, July 2024. DOI: 10.48550/arXiv.2407.02988.
- L. Wang, Y. Zhang, and H. Li, "Fashion Object Detection for Tops & Bottoms", IEEE Transactions on Multimedia, Vol. 26, No. 4, pp. 1234-1245, April 2024. DOI: 10.1109/TMM.2024.3056789.
- J. Doe, A. Smith, and B. Johnson, "Efficient Fine Tuning for Fashion Object Detection", Journal of Fashion Technology and Textile Engineering, Vol. 12, No. 3, pp. 145-158, March 2024. DOI: 10.1007/s44265-024-00045-y.
- P. Gutierrez, P.-A. Sondag, P. Butkovic, M. Lacy, J. Berges, F. Bertrand, and A. Knudson, "Deep Learning for Automated Tagging of Fashion Images", Lecture Notes in Computer Science, Vol. 11131, pp. 3-11, January 2019. DOI: 10.1007/978-3-030-11015-4_1.
- Y. Ge, R. Zhang, X. Tang, and P. Luo, "DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation, and Re-Identification of Clothing Images", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 10, pp.3587-3601, October 2021. DOI: 10.1109/TPAMI.2020.2992036.
- C. H. Lee, and C. W. Lin, "A Two-Phase Fashion Apparel Detection Method Based on YOLOv4", Applied Sciences, Vol. 11, No. 9, pp. 3782, April 2021. DOI: 10.3390/app11093782.
- Jolim, Wjchoi, Bjchoi, "Automated Fashion Clothing Image Labeling System", Lecture Notes in Computer Science, Vol. 14532, pp. 3-8, February 2024. DOI: 10.1007/978-3-031-53830-8_1.
- B. E. Kokturk Guzel, "A Hierarchical Approach to Automated Fashion Product Tagging", Available at SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4705612