DOI QR코드

DOI QR Code

전기자동차의 충전시설 이용현황 및 이용 영향요인 분석

Analysis of Electric Vehicle Charging Behavior and Factors Influencing Utilization

  • 김수재 (홍익대학교 도시공학과)
  • Sujae Kim (Dept. of Urban Design and Planning, Hongik University)
  • 투고 : 2024.10.06
  • 심사 : 2024.10.24
  • 발행 : 2024.10.31

초록

본 연구는 전기자동차 충전시설의 이용현황과 이용 영향요인을 분석하였다. 한국환경공단에서 제공하는 전기자동차 충전소 정보를 활용하여 서울시 내 충전시설 이용자료를 구축하였으며, 이용자료를 분석한 결과, 총 5,810개의 충전소와 28,233대의 충전기가 운영 중이며, 급속 충전기와 완속 충전기의 이용률은 각각 49.1%, 24.6%로 나타났다. 급속 충전기는 충전기당 2.3회, 1회당 47.2분 이용되었으며, 완속 충전기는 충전기당 1.2회, 1회당 251.5분 이용되었다. 충전시설 이용 영향요인 분석 결과, 이용 제한이 없는 충전소, 도로시설이 잘 갖춰진 지역, 상업 및 업무시설이 밀집된 지역에서 급속 충전기 이용이 활발하게 이루어졌다. 본 연구는 설문조사에 의존한 기존 연구와 달리 실제 충전 현황자료로 분석을 수행하였다는 점에서 의의가 있으며, 본 연구의 결과는 향후 충전시설 보급 전략을 수립하는 데 기초자료로 활용될 수 있을 것이다.

This study analyzes the recharging of electric vehicles and the factors influencing the utilization of chargers. Utilizing electric vehicle charging station data provided by the Korea Environment Corporation, utilization data in Seoul was constructed. A total of 5,810 charging stations and 28,233 chargers are in operation. The utilization rates for fast and slow chargers were 49.1% and 24.6%, respectively. On average, fast chargers were used 2.3 times per unit for 47.2 minutes per session, while slow chargers were used 1.2 times per unit for 251.5 minutes per session. Analysis of factors influencing charging station utilization revealed that fast chargers are more frequently used in stations with no usage restrictions, as well as areas with well-developed road infrastructure and in regions with a high density of commercial and business facilities. Unlike previous studies that relied on surveys, this study is significant because it utilizes actual charging station data. The results can serve as a foundational resource for formulating future charging infrastructure deployment strategies.

키워드

과제정보

본 연구는 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(RS-2023-00245357)

참고문헌

  1. Adenaw, L. and Lienkamp, M.(2021), "Multi-criteria, co-evolutionary charging behavior: An agent-based simulation of urban electromobility", World Electric Vehicle Journal, vol. 12, no. 1, p.18. 
  2. Baresch, M. and Moser, S.(2019), "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location", Transportation Research Part A: Policy and Practice, vol. 124, pp.388-395. 
  3. Byun, W., Lee, K. and Kee, H.(2013), "Analysis of choice model for EV charger types and willingness to pay for charging rate based on Logit model", The Journal of The Korea Institute of Intelligent Transport Systems, vol. 12, no. 4, pp.56-65. 
  4. Figenbaum, E. and Kolbenstvedt, M.(2016), Learning from Norwegian battery electric and plug-in hybrid vehicle users-results from a survey of vehicle owners, Institute of Transportation Economics. 
  5. Fu, F. and Dong, H.(2019), "Targeted optimal-path problem for electric vehicles with connected charging stations", Plos one, vol. 14, no. 8, e0220361. 
  6. Han H. and Yun, I.(2023), "Prediction of the electric vehicles supply and electricity demand using growth models", The Journal of The Korea Institute of Intelligent Transport System, vol. 22, no. 4, pp.132-144. 
  7. International Energy Agency(2024), Global EV outlook 2024 moving towards increased affordability.
  8. Jahn, R. M., Syre, A., Grahle, A., Schlenther, T. and Gohlich, D.(2020), "Methodology for determining charging strategies for urban private vehicles based on traffic simulation results", Procedia Computer Science, vol. 170, pp.751-756. 
  9. Kim, S., Kim, T. and Suh, K.(2015), "Analysis of construction plans of rapid charging infrastructures based on gas stations in rural areas to propagate electric vehicles", Journal of the Korean Society of Rural Planning, vol. 21, no. 1, pp.19-28. 
  10. Lee, J. H., Chakraborty, D., Hardman, S. J. and Tal, G.(2020), "Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure", Transportation Research Part D: Transport and Environment, vol.79, 102249. 
  11. Lee, W. and Hwang, T.(2019), "Electric vehicle fast-charging station location problem considering maximum connection distance", Koran Logistics Review, vol. 29, no. 4, pp.19-28. 
  12. Park, K., Jeon, H., Jung, K. and Son, B.(2017), "Charging behavior analysis of electric vehicle", Journal of Korean Society of Transportation, vol. 35, no. 3, pp.210-219. 
  13. Roh, G., Kim, S. and Choo, S.(2024), "Optimal supply calculation of electric vehicle slow chargers considering charging demand based on driving distance", The Journal of The Korea Institute of Intelligent Transport System, vol. 23, no. 2, pp.142-156. 
  14. Vazifeh, M. M., Zhang, H., Santi, P. and Ratti, C.(2019), "Optimizing the deployment of electric vehicle charging stations using pervasive mobility data", Transportation Research Part A: Policy and Practice, vol. 121, pp.75-91. 
  15. Yoo, J., Shin, H., Park, K. and Kim, C.(2023), "Analysis of electric vehicle use and charging behavior and policy implications: Powered by real time EV user data", Journal of Korean Society of Transportation, vol. 41, no. 6, pp.704-723.