DOI QR코드

DOI QR Code

교차로 제어 유형에 따른 전기차 에너지 절감 효과

Electric Vehicle Energy Saving Effects according to Intersection Control Type

  • 박동주 (조선대학교 토목공학과) ;
  • 박상준 (조선대학교 토목공학과) ;
  • 고영림 (조선대학교 토목공학과)
  • Dong joo Park (Dept. of Civil Eng., Chosun Univ.) ;
  • Sang jun Park (Dept. of Civil Eng., Chosun Univ.) ;
  • Young lim Ko (Dept. of Civil Eng., Chosun Univ.)
  • 투고 : 2024.09.11
  • 심사 : 2024.10.04
  • 발행 : 2024.10.31

초록

이 연구는 전기차 시대 도래에 따라 교차로 운영 방식이 에너지 절감에 미치는 영향을 분석한다. 교차로 제어 유형인 신호, 회전교차로, 비신호 교차로를 대상으로, VISSIM 시뮬레이션과 전기차 및 내연기관차의 에너지 소모 모형을 활용하여 에너지 절감량을 비교하였다. 각 교차로에서 교통량, 접근 속도, 좌회전 비율 등 다양한 시나리오를 바탕으로 에너지 소모량을 산출한 결과, 접근 속도 30kph에서는 신호 교차로가 대부분의 교통 상황에서 가장 에너지 효율성이 높았으며, 접근 속도 60kph에서는 회전교차로가 우수한 성과를 보였다. 특히, 내연기관차를 전기차로 전환했을 때 최대 83%의 에너지를 절감할 수 있었다. 또한 전기차의 회생제동 효과를 분석한 결과, 회전교차로와 신호 교차로 모두 에너지 재생 측면에서 긍정적인 성과를 보였다. 이 연구는 전기차 보급 확대에 따른 교차로 운영 전략 수립에 유용한 정책적 시사점을 제공한다.

This study analyzed the impact of the intersection control types on energy savings in the era of electric vehicles (EVs). Three types of intersection control (signalized, roundabout, and unsignalized intersections) were examined by comparing energy consumption between EVs and internal combustion engine vehicles (ICEVs) through VISSIM simulations and energy consumption models. Various scenarios, including traffic volume, approach speed, and left-turn ratios, were simulated to assess energy consumption. The results showed that signalized intersections were the most energy-efficient under most traffic conditions at an approach speed of 30 kph, while roundabouts showed excellent performance at 60 kph. EVs showed up to 83% energy savings compared to ICEVs. An analysis of regenerative braking in EVs highlighted the benefits of roundabouts and signalized intersections in energy recovery. This study provides valuable policy insights for developing intersection management strategies as EV adoption increases.

키워드

과제정보

이 논문은 조선대학교 학술연구비의 지원을 받아 연구되었음(2024년)

참고문헌

  1. Abousleiman, R. and Rawashdeh, O.(2015), "Energy consumption model of an electric vehicle," 2015 IEEE transportation electrification conference and expo (ITEC), pp.1-5. 
  2. Barth, M., An, F., Younglove, T., Scora, G., Levine, C., Ross, M. and Wenzel, T.(2000), "The development of a comprehensive modal emissions model," NCHRP Web-only Document, vol. 122, pp.25-11. 
  3. Di Martino, A., Miraftabzadeh, S. M. and Longo, M.(2022), "Strategies for the modelisation of electric vehicle energy consumption: a review," Energies, vol. 15, no. 21, 8115. 
  4. Dong, H., Zhuang, W., Ding, H., Zhou, Q., Wang, Y., Xu, L. and Yin, G.(2022), "Event-driven energy-efficient driving control in urban traffic for connected electric vehicles," IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp.99-113. 
  5. Fiori, C., Ahn, K. and Rakha, H. A.(2016), "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, vol. 168, pp.257-268. 
  6. International Energy Agency(IEA)(2024), Global EV outlook 2024. 
  7. Ministry of Land, Infrastructure and Transport(2014), Roundabout design guidelines. 
  8. Ministry of Land, Infrastructure and Transport(2015), Intersection design guidelines. 
  9. Ministry of Land, Infrastructure and Transport(2024), Vehicle registration status report. 
  10. Ministry of Land, Transport and Maritime Affairs(2013), Highway capacity manual. 
  11. Miri, I., Fotouhi, A. and Ewin, N.(2021), "Electric vehicle energy consumption modelling and estimation-A case study," International Journal of Energy Research, vol. 45, no. 1, pp.501-520. 
  12. Natural Resources Canada, https://natural-resources.canada.ca/energy-efficiency/transportation-alternative-fuels/personal-vehicles/choosing-right-vehicle/buying-electric-vehicle/understanding-the-tables/21383, 2024.09.02. 
  13. PAN-government(2021), 2050 Carbon neutral scenarios. 
  14. Rakha, H. A., Ahn, K., Moran, K., Saerens, B. and Van den Bulck, E.(2011), "Virginia tech comprehensive power-based fuel consumption model: model development and testing," Transportation Research Part D: Transport and Environment, vol. 16, no. 7, pp.492-503. 
  15. Rakha, H., Ahn, K. and Trani, A.(2004), "Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions," Transportation Research Part D: Transport and Environment, vol. 9, no. 1, pp.49-74. 
  16. Wang, J., Besselink, I. and Nijmeijer, H.(2015), "Electric vehicle energy consumption modelling and prediction based on road information," World Electric vehicle Journal, vol. 7, no. 3, pp.447-458. 
  17. Wipke, K. B., Cuddy, M. R. and Burch, S. D.(1999), "ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach," IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp.1751-1761. 
  18. Wu, X., Freese, D., Cabrera, A. and Kitch, W. A.(2015), "Electric vehicles' energy consumption measurement and estimation," Transportation Research Part D: Transport and Environment, vol. 34, pp.52-67. 
  19. Wu, Z., Wang, M., Zheng, J., Sun, X., Zhao, M. and Wang, X.(2018), "Life cycle greenhouse gas emission reduction potential of battery electric vehicle," Journal of Cleaner Production, vol. 190, pp.462-470. 
  20. Xia, H., Boriboonsomsin, K., Schweizer, F., Winckler, A., Zhou, K., Zhang, W. B. and Barth, M.(2012), "Field operational testing of eco-approach technology at a fixed-time signalized intersection," Paper presented at the 2012 15th International IEEE Conference on Intelligent Transportation Systems. 
  21. Xin, Q., Fu, R., Yuan, W., Liu, Q. and Yu, S.(2018), "Predictive intelligent driver model for eco-driving using upcoming traffic signal information," Physica A: Statistical Mechanics and its Applications, vol. 508, pp.806-823. 
  22. Yang, H., Almutairi, F. and Rakha, H.(2020), "Eco-driving at signalized intersections: A multiple signal optimization approach," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp.2943-2955. 
  23. Zhang, R. and Yao, E.(2015), "Eco driving at signalised intersections for electric vehicles," IET Intelligent Transport Systems, vol. 9, no. 5, pp.488-497.