DOI QR코드

DOI QR Code

Screening of Antagonistic Bacteria against Three Aquatic Pathogens and Characterization of Lipopeptides in Bacillus cereus BA09

  • Xinran Shi (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Weijia Zhou (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Xiaocen Lu (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Cuiyan Cao (Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry) ;
  • Dong Sheng (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Xu Ren (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Nanlin Jin (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Yu Zhang (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Zhixin Guo (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Shengnan Cao (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University) ;
  • Shigen Ye (Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University)
  • 투고 : 2024.04.11
  • 심사 : 2024.08.05
  • 발행 : 2024.10.28

초록

Screening for antagonistic bacteria on aquatic pathogens and identification of antagonistic ingredients are essential to reduce the use of chemicals in aquaculture. In this study, strain BA09, subsequently identified as Bacillus cereus, simultaneously displayed strong antagonistic effects on Edwardsiella tarda, Vibrio harveyi, and Streptococcus anisopliae in the initial screening and rescreening. In addition, the methanol extract of BA09 was subjected to antibacterial activity verification and one-dimensional (1D) reversed-phase liquid chromatography (RPLC) preparation. A total of 27 fractions were collected, 6 of which were subjected to two-dimensional (2D) RPLC separation and tracked as antibacterial. A total of 14 lipopeptides that included 9 fengycin homologs, 3 bacillomycin homologs, and 2 surfactin homologs were identified by tandem high-resolution mass spectrometry. Through characterization of the antibacterial substance in Bacillus cereus BA09, which simultaneously inhibited E. tarda, V. harveyi, and S. agalactiae, the current study provides a theoretical basis for the development of antibacterial drugs in aquaculture.

키워드

과제정보

The work was supported by Liaoning Provincial Science and Technology Mission Project (20230025), Liaoning Province Doctoral Scientific Research Foundation Project (2021-BS-236,2021-BS-238) and Liaoning Provincial Department of Education Basic Scientific Research (JYTMS20230485).

참고문헌

  1. Castro N, Toranzo AE, Devesa S, Gonzalez A, Nunez S, Magarinos B. 2012. First description of Edwardsiella tarda in Senegalese sole, Solea senegalensis (Kaup): Edwardsiella in Senegalese sole. J. Fish Dis. 35: 79-82.
  2. Shetty M, Maiti B, Venugopal MN, Karunasagar I, Karunasagar I. 2014. First isolation and characterization of Edwardsiella tarda from diseased striped catfish, Pangasianodon hypophthalmus (Sauvage). J. Fish Dis. 37: 265-271.
  3. Huo H, Yin S, Jia R, Huang B, Lei J, Liu B. 2017. Effect of crowding stress on the immune response in turbot (Scophthalmus maximus) vaccinated with attenuated Edwardsiella tarda. Fish Shellfish Immunol. 67: 353-358.
  4. Talpur AD. 2014. Mentha piperita (Peppermint) as feed additive enhanced growth performance, survival, immune response and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harveyi infection. Aquaculture 420-421: 71-78.
  5. Hashem M, El-Barbary M. 2013. Vibrio harveyi infection in Arabian Surgeon fish (Acanthurus sohal) of Red sea at Hurghada, Egypt. Egypt. J. Aquatic Res. 39: 199-203.
  6. Seraspe EB, Gabotero S, De la Pena MR, Pahila IG, Amar EC. 2014. Evaluation of dietary freeze-dried Chaetoceros calcitrans supplementation to control Vibrio harveyi infection on Penaeus monodon juvenile. Aquaculture 432: 212-216.
  7. Laith AR, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, et al. 2017. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet. World 10: 101-111.
  8. Bowater RO, Forbes-Faulkner J, Anderson IG, Condon K, Robinson B, Kong F, et al. 2012. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia: Streptococcus agalactiaein wild grouper. J. Fish Dis. 35: 173-186.
  9. Yuan Y, Zhang Y, Qi G, Ren H, Gao G, Jin X, et al. 2021. Isolation, identification, and resistance gene detection of Vibrio harveyi from Scophthalmus maximus. Aquac. Int. 29: 2357-2368.
  10. Cai X, Peng Y, Wang Z, Huang T, Xiong X, Huang Y, et al. 2016. Characterization and identification of streptococci from golden pompano in China. Dis. Aquat. Org. 119: 207-217.
  11. Midhun Sebastian Jose, Arun D, Neethu S, Radhakrishnan EK, Jyothis M. 2023. Probiotic Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B combination improved growth performance, enzymatic profile, gene expression and disease resistance in Oreochromis niloticus. Microb. Pathog. 174: 105951.
  12. Zhang D, Gao Y, Ke X, Yi M, Liu Zh, Han X, et al. 2019. Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Appl. Microbiol. Biotechnol. 103: 9023-9035.
  13. Yamashita MM, Pereira SA, Cardoso L, de Araujo AP, Oda CE, Schmidt EC, et al. 2017. Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac. Nutr. 23: 1235-1243.
  14. Ke X, Liu Z, Zhang M, Zhu W, Yi M, Cao J, et al. 2022. A Bacillus cereus NY5 strain from tilapia intestine antagonizes pathogenic Streptococcus agalactiae growth and adhesion in vitro and in vivo. Aquaculture 561: 729-738.
  15. Hu Z, Zhang W, Liang W, Zhang Z, Guo M, Li C. 2021. Bacillus cereus LS2 from Apostichopus japonicus antagonizes Vibrio splendidus growth. Aquaculture 531: 735983.
  16. Zhang Y, Li Z, Mao B. 2016. Research progress on antagonistic substances secreted by biocontrol Bacillus. J. Zhejiang Agric. Sci. 57: 1960-1967.
  17. Shabeer Ali H, Ajesh K, Dileep KV, Prajosh P, Sreejith K. 2020. Structural characterization of Kannurin isoforms and evaluation of the role of β-hydroxy fatty acid tail length in functional specificity. Sci. Rep. 10: 2839.
  18. Zhang L, Luo L. 2012. Identification of a Bacillus cereus strain and primary analysis on its antimicrobial substance. China Brewing 31: 99-102.
  19. Gao Y, Chen Y, Liu Y, Chen X, Gao T, Zhang D. 2019. Optimization of the fermentation medium and analysis of the compositions of antifungal compounds from Bacillus malacitensis Z-5. Cotton Sci. 31: 210-220.
  20. Vanhoenacker G, Sandra P, Sandra K. 2022. Minimizing the risk of missing critical sample information by using two-dimensional liquid chromatography. LCGC North America, September 2022 40, pp. 445-450.
  21. Cacciola F, Russo M, Mondello L, Dugo P. 2017. Comprehensive two-dimensional liquid chromatography, in: Liquid Chromatography. Elsevier, pp. 403-415.
  22. Middelboe M, Chan AM, Bertelsen SK. 2010. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria. In Wilhelm S, Weinbauer M, Suttle C (eds.), Manual of Aquatic Viral Ecology. American Society of Limnology and Oceanography, pp. 118-133.
  23. Li Y, Yang S, Lin X, Zhong Y, Su T, Liu X. 2010. Identification of bacteriocin-producing Bacillus thuringiensis and properties of its antibacterial substances. Food Sci. 31: 147-152.
  24. Vater J, Gao X, Hitzeroth G, Wilde C, Franke P. 2003. "Whole cell"-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research. Comb. Chem. High Throughput Screen. 6: 557-567.
  25. Ait Kaki A, Smargiasso N, Ongena M, Kara Ali M, Moula N, De Pauw E, et al. 2020. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a salt lake of eastern Algeria. Curr. Microbiol. 77: 443-451.
  26. Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK. 2016. Surfactin, Iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb. Ecol. 72: 106-119.
  27. Tabbene O, Azaiez S, Di Grazia A, Karkouch I, Ben Slimene I, Elkahoui S, et al. 2016. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J. Appl. Microbiol. 120: 289-300.
  28. Liu W, Sun C. 2021. C17-fengycin B, produced by deep-sea-derived Bacillus subtilis, possessing a strong antifungal activity against Fusarium solani. J. Ocean. Limnol. 39: 1938-1947.
  29. Sa RB, An X, Sui JK, Wang XH, Ji C, Wang CQ, et al. 2018. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis from poplar wood bark. Australas. Plant Pathol. 47: 259-268.
  30. Ma Y, Kong Q, Qin C, Chen Yulin, Chen Yujie, Lv R, et al. 2016. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MS. AMB Express 6: 79.
  31. Monaci L, Quintieri L, Caputo L, Visconti A, Baruzzi F. 2016. Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution OrbitrapTM mass spectrometry: rapid typing of B. subtilis strain filtrate by LC/HRMS. Rapid Commun. Mass Spectrom. 30: 45-53.
  32. Yang X, Deng Q, Tao S, Sun L, Wang Y, Liao J, et al. 2018. Identification of Antagonistic Bacillus HY?5 and its antimicrobial compositions from mangrove against specific salt resistance fungi of marine dried fish. Sci. Technol. Food Ind. 39: 120-125.
  33. Shaligram NS, Singhal RS. 2010. Surfactin - a review on biosynthesis, fermentation, purification and applications. Food Technol. Biotechnol. 48: 119-134.
  34. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. 2017. Biological activity of lipopeptides from Bacillus.Appl. Microbiol. Biotechnol. 101: 5951-5960.
  35. O'Rourke A, Beyhan S, Choi Y, Morales P, Chan AP, Espinoza JL, et al. 2020. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob. Agents Chemother 64: e01207-19.
  36. Bie X, Lu Z, Lu F. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Methods 79: 272-278.
  37. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
  38. Gu Y, Zheng R, Sun C, Wu S. 2022. Isolation, identification and characterization of two kinds of deep-sea bacterial lipopeptides against foodborne pathogens. Front. Microbiol. 13: 792755.
  39. Kaspar F, Neubauer P, Gimpel M. 2019. Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J. Nat. Prod. 82: 2038-2053.