DOI QR코드

DOI QR Code

Carotenoid-Producing Paracoccus aurantius sp. nov., Isolated from the West Coast of Dokdo Island, Republic of Korea

  • Chi Young Hwang (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ;
  • Eui-Sang Cho (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ;
  • Eun Hee Bae (Climate Change and Environmental Biology Research Division, National Institute of Biological Resources) ;
  • Dong-Hyun Jung (Climate Change and Environmental Biology Research Division, National Institute of Biological Resources) ;
  • Myung-Ji Seo (Department of Bioengineering and Nano-Bioengineering, Incheon National University)
  • 투고 : 2024.04.30
  • 심사 : 2024.07.25
  • 발행 : 2024.10.28

초록

In this study, a novel species within the genus Paracoccus was isolated from the coastal soil of Dokdo (Seodo) Island and investigated. We elucidated the novel species, designated MBLB3053T, through genomic analysis of novel functional microbial resources. Cells were gram-negative, non-motile, and coccoid, and the colony was light orange in color. Phylogenetic analysis based on the 16S rRNA gene showed that strain MBLB3053T was related to the genus Paracoccus, with 98.5% similarity to Paracoccus aestuariivivens. Comparative genome analysis also revealed the strain to be a novel species of the genus Paracoccus by average nucleotide identity and in silico DNA-DNA hybridization values. Through secondary metabolite analysis, terpene biosynthetic gene clusters associated with carotenoid biosynthesis were found in strain MBLB3053T. Using high-performance liquid chromatography, strain MBLB3053T was confirmed to produce carotenoids, including all-trans-astaxanthin, by comparison to the standard compound. Notably, the isolate was also confirmed to produce carotenoids that other closely related species did not produce. Based on this comprehensive polyphasic taxonomy, strain MBLB3053T represents a novel species within the genus Paracoccus, for which the name Paracoccus aurantius sp. nov is proposed. The type strain was MBL3053T (=KCTC 8269T =JCM 36634T). These findings support the research and resource value of this novel species, which was isolated from the Dokdo environmental microbiome.

키워드

과제정보

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202227102 and NIBR202331102).

참고문헌

  1. Pujalte MJ, Lucena T, Ruvira MA, Arahal, DR, Macian MC. 2014. The Family Rhodobacteraceae. pp.439-512. In The Prokaryotes, Berlin, Springer.
  2. Pohlner M, Dlugosch L, Wemheuer B, Mills H, Engelen B, Reese BK. 2014. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: a molecular approach to link their distribution to environmental conditions. Front. Microbiol. 10: 443927.
  3. Parte AC, Sarda Carbasse J, Meier-Kolthoff JP, Reimer LC, Goker M. 2020. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70: 5607-5612.
  4. Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. 61: 533-616.
  5. Klueglein N, Zeitvogel F, Stierhof YD, Floetenmeyer M, Konhauser KO, Kappler A, et al. 2014. Potential role of nitrite for abiotic Fe (II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol. 80: 1051-1061.
  6. Harker M, Hirschberg J, Oren A. 1998. Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int. J. Syst. Evol. Microbiol. 48: 543-548.
  7. Tsubokura A, Yoneda H, Mizuta H. 1999. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 49: 277-282.
  8. Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I, et al. 2003. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 53: 231-238.
  9. Lee JH, Kim YS, Choi T-J, Lee WJ, Kim YT. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699-1702.
  10. Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lunsdorf H, et al. 2009. A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr. J. Microbiol. Res. 3: 426-433.
  11. Lee JH, Kim YT. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370: 86-95.
  12. Katsumata T, Ishibashi T, Kyle D. 2014. A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats. Toxicol. Rep. 1: 582-588.
  13. Kumar P, Jun H-B, Kim BS. 2018. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int. J. Biol. Macromol. 107: 2552-2558.
  14. Park TH, Lee DY, Kang HY, Park JM, Kim D, Park HJ. 2024. Trophic structure of fish assemblages in two offshore islands (Ulleungdo and Dokdo) of Korea revealed using stable isotope analysis. Front. Mar. Sci. 11: 1293542.
  15. Park S, Yoon SY, Jung YT, Won SM, Park DS, Yoon JH. 2016. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 66: 2992-2998.
  16. Park S, Choi J, Choi SJ, Yoon JH. 2017. Paracoccus litorisediminis sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 67: 4760-4766.
  17. Singh AK, Kohli P, Mahato NK, Lal R. 2017. Paracoccus sordidisoli sp. nov., isolated from an agricultural field contaminated with hexachlorocyclohexane isomers. Int. J. Syst. Evol. Microbiol. 67: 4365-4371.
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.
  19. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
  20. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.
  21. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  22. Kluge AG, Farris JS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18: 1-32.
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
  24. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
  25. Tittsler RP, Sandholzer LA. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31: 575-580.
  26. Benson HJ. 2002. Microbiological applications: a laboratory manual in general microbiology, New York, McGraw-Hill Book Company.
  27. Cowan ST, Steel KJ, Mccoy E. 1994. Manual for the Identification of Medical Bacteria, Cambridge, Cambridge University Press.
  28. Bauer AW. 1966. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45: 493-496.
  29. Miller LT. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16: 584-586.
  30. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI, Newark, DE.
  31. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45: 316.
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods. 2: 233-241.
  33. Komagata K, Suzuki KI. 1988. Lipid and cell-wall analysis in bacterial systematics. Method. Microbiol. 19: 161-207.
  34. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569.
  35. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057.
  36. Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103.
  37. Auch AF, von Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2: 117-134.
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14: 60.
  39. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference pro-gram. Mol. Biol. Evol. 32: 2798-2800.
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genom. 9: 75.
  41. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5: 8365.
  42. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34: 2115-2122.
  43. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: D309-D314.
  44. Blin K, Shaw S, Steinke K, Kloosterman AM, Charlop-Powers Z, van Wezel GP, et al. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35.
  45. Park SY, Choi SR, Lim SH, Yeo Y, Kweon SJ, Bae YS, et al. 2014. Identification and quantification of carotenoids in paprika fruits and cabbage, kale, and lettuce leaves. J. Korean Soc. Appl. Biol. Chem. 57: 355-358.
  46. Tan Y, Ye Z, Wang M, Manzoor MF, Aadil RM, Tan X, et al. 2021. Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: chemical composition and biological activity. Molecules 26: 3569.
  47. Konstantinidis KT, Tiedje JM. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187: 6258-6264.
  48. Chen WM, Li YS, Young CC, Sheu SY. 2017. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int. J. Syst. Evol. Microbiol. 67: 2689-2695.
  49. Wang F, Gong XF, Meng D, Liu YL, Gu PF, Fan XY, et al. 2021. Paracoccus binzhouensis sp. nov., isolated from activated sludge. Arch. Microbiol. 203: 3007-3013.
  50. Lee JH, Seo YB, Jeong SY, Nam SW, Kim YT. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12: 312-317.
  51. Maj A, Dziewit L, Drewniak L, Garstka M, Krucon, T Piatkowaska K et al. 2020. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes. Microb. Cell Fact. 19: 141.
  52. Liu X, Osawa T. 2004. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 357: 187-193.