DOI QR코드

DOI QR Code

항만 상치 콘크리트 품질 관리를 위한 비파괴 스캐닝 기법 비교 연구

Comparative Study on NDT Techniques for Evaluation of Concrete Quality Exposed to Marine Environment

  • 송호민 (가천대학교 토목환경공학과) ;
  • 민지영 (한국건설기술연구원 구조연구본부)
  • Homin Song (Department of Civil and Environmental Engineering, Gachon University) ;
  • Jiyoung Min (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2024.08.05
  • 심사 : 2024.09.30
  • 발행 : 2024.10.31

초록

부두 안벽의 주요 재료인 콘크리트는 염해 환경에 직접적으로 노출되어 있으며, 특히 상치 콘크리트는 선박 계선 및 상·하역 작업이 반복적으로 이루어지는 특성 상 품질 저하 속도가 상대적으로 빠르다. 콘크리트 품질은 「시설물 안전 및 유지관리 실시 세부지침」에 의해 점 단위 샘플링을 통해 평가되며, 샘플링 위치에서의 결과값이 점검단위를 대표한다. 본 논문에서는 대면적에 해당하는 상치 콘크리트를 대상으로 다양한 비파괴 스캐닝 기법을 적용하여 면적 단위 품질 관리 방안을 검토하였다. 그 결과, 계선 작업 구간에서 열화가 집중적으로 발생함을 초음파 어레이 이미징 및 GPR 스캐닝 결과로부터 확인할 수 있었으며, 기존의 샘플링 기반 초음파 속도(UPV), 반발경도 값을 통해서는 품질 저하와 관련한 정확한 판단이 어려웠다.

Concrete, the primary material used in quay walls, is directly exposed to saline environments. Coping concrete, particularly in areas where periodic berthing and loading/unloading occur, is prone to rapid quality deterioration. Current facility safety and maintenance guidelines assess concrete durability at specific points through sampling, which are intended to represent the entire inspection unit. This paper explores quality management strategies from an areal perspective by applying various non-destructive scanning methods to extensive areas of coping concrete. Ultrasonic array imaging and ground-penetrating radar scanning images revealed significant quality degradation in berthing operation areas, whereas sampling-based ultrasonic pulse velocity and rebound hardness values were less effective in detecting this degradation.

키워드

과제정보

본 논문은 해양수산부 재원 해양수산과학기술진흥원(과제번호: 20210659)의 지원을 받아 수행되었습니다. 인천항만공사의 실험 협조 및 지원에 진심으로 감사드립니다.

참고문헌

  1. Akashi, T. (1988). Studies on nondestructive testings of concrete. Doboku Gakkai Ronbunshu, 390(8), 1-22 (in Japanese).
  2. Architectural Institute of Japan (AIJ) (1983). Manual of nondestructive test methods for the evaluation of concrete strength (in Japanese).
  3. Concept Marine Associates (2004). County of San Mateo Werder Pier Restoration Feasibility Study, March 2004, San Mateo County.
  4. Han, M.Y. and Kim, D.W. (1999). A study on the pull-out test fornon-destructive evaluation of concrete strength. Proceeding of the Korea Concrete Institute, 11(2), 639-642 (in Korean).
  5. Han, S.H., Yi, J.H. and Park, W.S. (2011). Evaluation of chloride ion penetration characteristics for concrete structures at coastal area. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 11-17 (in Korean).
  6. Johnson, S. (2015). Degradation mechanisms and inspection techniques for concrete structures in dry storage systems for spent nuclear fuel. EPRI 3002005508, Electric Power Research Institute, Palo Alto, CA.
  7. Kim, M.W., Oh, H. and Oh, K.C. (2016). Estimating the compressive strength of high-strength concrete using surface rebound value and ultrasonic velocity. Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 1-9 (in Korean).
  8. Lee, J.-W. Kee, S.-H. and Lee, K.S. (2022a). Evaluation of debonding defects in railway concrete slabs using shear wave tomography. Journal of the Korea Institute for Structural Maintenance and Inspection, 26(3), 11-20 (in Korean).
  9. Lee, T., Choi, H. and Kang, S.-M. (2022b). Development of a GPR imaging algorithm to detect void-like defects in reinforced concrete elements. Journal of the Korean Society of Nondestructive Testing, 42(4), 302-309 (in Korean).
  10. Mehta, P.K., Monteiro, P.J.M. and Ebrary, I. (2006). Concrete: Microstructure, properties, and materials. 3rd ed., McGrawHill, New York.
  11. Park, J.-S. and Lee, J.-S. (2022). Review of adequacy for on-site application of concrete freeze-thaw damage evaluation method using surface rebound value. Journal of the Korean Recycled Construction Resources Institute, 10(4), 539-546 (in Korean).
  12. Park, J.-S., Ahn K.-H., You, Y-J. and Lee, J.-S. (2022). Evaluating the freeze-thaw damage of concrete with respect to water to cement ratio using surface rebound value. Journal of the Korean Recycled Construction Resources Institute, 10(2), 143-151 (in Korean).
  13. Saint-Pierre, F., Philibert, A., Giroux, B. and Rivard, P. (2016). Concrete quality designation based on ultrasonic pulse velocity. Construction and Building Materials, 125, 1022-1027.
  14. Yi, J-H., Park, S.H. and Park, W.S. (2011). Evaluation of material properties of concrete harbour facilities using nondestructive testing methods. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 1-10 (in Korean).