DOI QR코드

DOI QR Code

1 MW 조류발전기 O&M 위험성평가 사례 연구

A Case Study on the Risk Assessment for O&M of a 1 MW Tidal Current Energy Converter

  • 고동휘 (한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 이진학 (한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 박진순 (한국해양과학기술원 울돌목조류발전기지) ;
  • 홍혜민 (한국해양과학기술원 해양공간개발.에너지연구부)
  • Dong-Hui Ko (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology) ;
  • Jin-Hak Yi (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology) ;
  • Jin-Soon Park (Uldolmok Tidal Power Station, Korea Institute of Ocean Science & Technology) ;
  • Hyemin Hong (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology)
  • 투고 : 2024.08.12
  • 심사 : 2024.10.04
  • 발행 : 2024.10.31

초록

조류발전은 조류에너지를 활용하여 전기를 생산하는 기술로서 최근 몇 년간 기술 수준의 향상으로 실해역 성능 테스트 단계에 도달하였다. 그러나 국내의 경우, 공사 경험 및 장비가 부족하고 울돌목 해역과 같은 강유속 해역에서 작업이 이루어져야 하기 때문에 해상 작업에는 다양한 위험 요인이 존재한다. 이러한 위험 요인의 감소 대책 수립을 위해 국내 산업안전보건법에서는 작업 중 발생할 수 있는 위험 요인을 사전에 식별하고 이를 관리하기 위한 위험성평가 수행을 권고하고 있다. 위험성평가는 작업 중 발생 가능한 위험 요인을 식별하고 평가하는 일련의 과정으로 사고로부터 발생하는 손실을 최소화하기 위한 것이다. 이에 본 연구에서는 1 MW 조류발전시스템의 해상 Operation and Maintenance(O&M) 작업 중 발생할 수 있는 위험 요인을 식별하고 작업자 및 환경의 안전을 확보하기 위하여 위험성평가를 수행하였다. 위험 요인으로는 해양 및 기상조건, 장비 및 인력, 작업환경 등을 포함하여 총 60 개의 위험 요인을 도출하였으며, 여러 현장 전문가들의 판단에 따라 총 3회에 걸쳐 정성적 위험성평가를 수행하였다.

Tidal power is a technology that generates electricity by utilizing tidal current energy, and in recent years, with the advancement of technology, it has reached the stage of real sea performance test. However, in the case of Korea, there is a lack of construction experience and equipment, and work in fast flows such as the Uldolmok region involves various risk factors. In order to establish measures to reduce these risk factors, Korea's Occupational Safety and Health Act recommends performing a risk assessment to identify and manage risk factors that may occur during work in advance. Risk assessment is a process aimed at identifying and evaluating potential risk factors that may arise during work, with the goal of minimizing losses caused by accidents. Therefore, in this study, a risk assessment was conducted to identify risk factors that may occur during offshore O&M work of the 1 MW tidal current energy converter and to ensure the safety of workers and the environment. A total of 60 risk factors were identified, including marine and weather conditions, equipment and personnel, and work environments, and a qualitative risk assessment was conducted three times based on the judgment of several field experts.

키워드

과제정보

본 논문은 한국해양과학기술원 기관목적사업인 "해양에너지 및 항만·해양구조물 고도화 기술 개발(PEA0221)" 과제의 일환으로 수행되었습니다.

참고문헌

  1. Acadia Centre for Estuarine Research (2012). A Framework for Environmental Risk Assessment and Decision-Making for Tidal Energy Development in Canada. No. 106, Acadia University, Canada.
  2. G+ Global Offshore Wind Health & Safety Organisation (2022). 2021 Incident Data Report. Energy Institute, UK.
  3. Ineternational Electrotechnical Commission (2016). Hazard and Operability Studies (HAZOP studies)-Application Guide. IEC, Switzerland.
  4. Ineternational Electrotechnical Commission (2019). IEC 31010 Risk Management - Risk Assessment Techniques. IEC, Switzerland.
  5. Ineternational Electrotechnical Commission (2024). Electropedia: The World's Online Electrotechnical Vocabulary, www.electropedia.org, section 903, IEC, Switzerland.
  6. International Organization for Standardization (2016). ISO 17776: Petroleum and Natural Gas Industries - Offshore Production Installations - Major Accident Hazard Management during the Design of New Installations. ISO, Switzerland.
  7. International Organization for Standardization (2018). ISO 31000: Risk management-Guidelines. ISO, Switzerland.
  8. Ko, D.-H., Chung, J., Lee, K.-S., Park, J.-S. and Yi, J.-H. (2019). Current Policy and Technology for Tidal Current Energy in Korea. Energies, 12.
  9. Ko, D.-H., Ge, Y., Park, J.-S., Liu, L., Ma, C., Chen, F., Peng, J., Kang, S.-K., Yi, J.-H. and Liu, W. (2022). A comparative study of laws and policies on supporting marine energy development in China and Korea. Marine Policy, 141.
  10. Korea Occupational Safety and Health Agency (2021). Risk Assessment Guideline. KOSHA (in Korean).
  11. Lazakis, I., Turan, O. and Rosendahl, T. (2012). Risk assessment for the installation and maintenance activities of a low-speed tidal energy converter. In RINA Marine & Offshore Renewable Energy conference, Royal Institution of Naval Architects.
  12. Liu, R., Liu, H.-C., Shi, H. and Hu, X. (2023). Occupational health and safety risk assessment: A systematic literature review of models, methods, and applications. Safety Science, 160, 106050.
  13. Liu, R., Liu, Z., Liu, H.-C. and Shi, H. (2021). An improved alternative queuing method for occupational health and safety risk assessment and its application to construction excavation. Automation in Construction, 126, 103672.
  14. Ministry of Employment and Labor (2024). Occupational Safety and Health Act (Act No. 19591). Ministry of Government Legislation (in Korean).
  15. Mulholland, B. and Christian, J. (1999). Risk assessment in construction schedules. Journal of Construction Engineering and Management, 125(1), 8-15.
  16. Snowberg, D. and Weber, J. (2015). Marine and Hydrokinetic Technology Development Risk Management Framework. NREL/TP-5000-63258, NREL, USA.
  17. Vinnem, J.E. (1999). Offshore Risk Assessment - Principles, Modelling and Applications of QRA Studies. Springer, UK.
  18. World Laws Information Center (2021). National Penalties for Industrial Accidents. https://world.moleg.go.kr/web/dta/lgslTrendReadPage.do?CTS_SEQ=49476&AST_SEQ=3891&ETC=1, MOLEG (in Korean).