DOI QR코드

DOI QR Code

인공위성 원격탐사 기반 메탄 배출 모니터링 기술 현황

Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies

  • 김민주 (동아대학교 에너지자원공학과) ;
  • 박정우 (동아대학교 에너지자원공학과) ;
  • 현창욱 (동아대학교 에너지자원공학과)
  • Minju Kim (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Jeongwoo Park (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Chang-Uk Hyun (Department of Energy and Mineral Resources Engineering, Dong-A University)
  • 투고 : 2024.08.29
  • 심사 : 2024.09.24
  • 발행 : 2024.10.29

초록

메탄은 이산화탄소에 이어 두 번째로 지구온난화에 미치는 영향이 큰 온실가스로, 기후변화에 상당한 영향을 미친다. 본 논문에서는 메탄 배출을 효율적으로 탐지하고 정량화하기 위해 사용되는 인공위성 원격탐사 기반 메탄 탐지 기술을 종합적으로 검토하고자 한다. 메탄 배출원은 크게 자연적 배출원(영구동토, 습지)과 인위적 배출원(농축산업, 석탄광, 석유 및 가스전, 폐기물 처리)으로 구분된다. 이 중 인위적 배출원에 대해 단파장적외선을 포함한 다양한 파장영역의 정보를 활용한 메탄 탐지의 원리와 이를 지원하는 주요 위성자료의 활용성에 대해 고찰하였다. 최근에는 위성자료를 활용한 메탄 탐지에서 딥러닝 기법을 적용한 연구들이 진행되고 있으며 이는 메탄 배출을 보다 정확하게 분석하는 데 기여하고 있다. 또한, 딥러닝 기법 적용 사례를 포함하여 전 지구, 지역 및 대형 사고 규모에서의 메탄 배출 탐지 사례를 종합적으로 검토하고 위성 기반 메탄 모니터링의 실용성을 평가하였다. 전 지구 규모에서는 Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI)와 같은 위성 센서를 사용한 연구들이 검토되었고 지역 규모에서는 주로 TROPOMI 자료와 상대적으로 고해상도의 위성자료(Sentinel-2 MultiSpectral Instrument (MSI), GHGSat Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer 등)를 결합하여 메탄 배출 및 배출량을 탐지한 연구 사례를 소개하였다. 이러한 종합적 검토를 통해 위성 기반 메탄 탐지 기술의 현황과 활용성을 평가하였다.

Methane is the second most significant greenhouse gas contributing to global warming after carbon dioxide, exerting a substantial impact on climate change. This paper provides a comprehensive review of satellite remote sensing-based methane detection technologies used to efficiently detect and quantify methane emissions. Methane emission sources are broadly categorized into natural sources (such as permafrost and wetlands) and anthropogenic sources (such as agriculture, coal mines, oil and gas fields, and landfills). This study focuses on anthropogenic sources and examines the principles of methane detection using information from various spectral bands, including the shortwave infrared (SWIR) band, and the utilization of key satellite data supporting these technologies. Recently, deep learning techniques have been applied in methane detection research using satellite data, contributing to more accurate analyses of methane emissions. Furthermore, this paper assesses the practicality of satellite-based methane monitoring by synthesizing case studies of methane emission detection at global, regional, and major incident scales, including examples of applying deep learning techniques. At the global scale, research utilizing satellite sensors like the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) was reviewed. At the regional scale, studies were highlighted where TROPOMI data was combined with relatively high-resolution satellite data, such as the Sentinel-2 MultiSpectral Instrument (MSI) and GHGSat Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer, to detect methane emissions and sources. Through this comprehensive review, the current state and applicability of satellite-based methane detection technologies are evaluated.

키워드

과제정보

이 논문은 동아대학교 교내연구비 지원에 의하여 연구되었습니다.

참고문헌

  1. 국립농업과학원. (2021) 농경지 온실가스 자동측정 및 배출량 품질관리 기법 연구. 농촌진흥청.
  2. Barchyn, T.E., Hugenholtz, C.H., and Fox, T.A. (2019) Plume detection modeling of a drone-based natural gas leak detection system. Elem. Sci. Anth., v.7, p.41. https://doi.org/10.1525/elementa.379
  3. Chai, X., Tonjes, D.J., and Mahajan, D. (2016) Methane emissions as energy reservoir: context, scope, causes and mitigation strategies. Progress in Energy and Combustion Science, v.56, p.33-70. https://doi.org/10.1016/j.pecs.2016.05.001
  4. Cusworth, D.H., Jacob, D.J., Varon, D.J., Chan Miller, C., Liu, X., Chance, K., Thorpe, A.K., Duren, R.M., Miller, C.E., Thompson, D.R., Frankenberg, C., Guanter, L., and Randles, C.A. (2019) Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, v.12(10), p.5655-5668. https://doi.org/10.5194/amt-12-5655-2019
  5. Duren, R.M., Thorpe, A.K., Foster, K.T., Rafiq, T., Hopkins, F.M., Yadav, V., Bue, B.D., Thompson, D.R., Conley, S., Colombi, N.K., Frankenberg, C., McCubbin, I.B., Eastwood, M.L., Falk, M., Herner, J.D., Croes, B.E., Green, R.O., and Miller, C.E. (2019) California's methane super-emitters. Nature, v.575(7781), p.180-184. https://doi.org/10.1038/s41586-019-1720-3
  6. Dogniaux, M., Maasakkers, J.D., Varon, D.J., and Aben, I. (2024) Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak. Atmospheric Measurement Techniques, v.17(9), p.2777-2787. https://doi.org/10.5194/amt17-2777-2024
  7. Elder, C.D., Thompson, D.R., Thorpe, A.K., Chandanpurkar, H.A., Hanke, P.J., Hasson, N., James, S.R., Minsley, B.J., Pastick, N.J., Olefeldt, D., Walter Anthony, K.M., and Miller, C.E. (2021) Characterizing methane emission hotspots from thawing permafrost. Global Biogeochemical Cycles, v.35(12). https://doi.org/10.1029/2020GB006922
  8. Ehret, T., De Truchis, A., Mazzolini, M., Morel, J.M., d'Aspremont, A., Lauvaux, T., Duren, R., Cusworth, D., and Facciolo, G. (2022) Global tracking and quantification of oil and gas methane emissions from recurrent sentinel-2 imagery. Environmental Science & Technology, v.56(14), p.10517-10529. https://doi.org/10.1021/acs.est.1c08575
  9. Frankenberg, C., Thorpe, A.K., Thompson, D.R., Hulley, G., Kort, E.A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., Conley, S., Bue, B.D., Aubrey, A.D., Hook, S., and Green, R.O. (2016) Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proceedings of the National Academy of Sciences, v.113(35), p.9734-9739. https://doi.org/10.1073/pnas.1605617113
  10. Global Methane Pledge. (2023) https://www.globalmethanepledge.org/sites/default/files/documents/2023-11/Global%20Methane%20Pledge.pdf
  11. Gorrono, J., Varon, D.J., Irakulis-Loitxate, I., and Guanter, L. (2023) Understanding the potential of Sentinel-2 for monitoring methane point emissions. Atmospheric Measurement Techniques, v.16(1), p.89-107. https://doi.org/10.5194/amt-16-89-2023
  12. He, H., Gao, S., Hu, J., Zhang, T., Wu, T., Qiu, Z., Zhang, C., Sun, Y., and He, S. (2021) In-situ testing of methane emissions from landfills using laser absorption spectroscopy. Applied Sciences, v.11(5), 2117. https://doi.org/10.3390/app11052117
  13. IEA (2022) Global methane emissions from the energy sector over time, 2000-2021, IEA, Paris https://www.iea.org/data-andstatistics/charts/global-methane-emissions-from-the-energysector-over-time-2000-2021.
  14. IEA (2024) Main sources of methane emissions, IEA, Paris https://www.iea.org/data-and-statistics/charts/main-sources-of-methaneemissions.
  15. Jongaramrungruang, S., Frankenberg, C., Matheou, G., Thorpe, A.K., Thompson, D.R., Kuai, L., and Duren, R.M. (2019) Towards accurate methane point-source quantification from high-resolution 2-D plume imagery. Atmospheric Measurement Techniques, v.12(12), p.6667-6681. https://doi.org/10.5194/amt12-6667-2019
  16. Joyce, P., Ruiz Villena, C., Huang, Y., Webb, A., Gloor, M., Wagner, F.H., Chipperfield, M.P., Barrio Guillo, R., Wilson, C., and Boesch, H. (2023) Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images. Atmospheric Measurement Techniques, v.16(10), p.2627-2640. https://doi.org/10.5194/amt16-2627-2023
  17. IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi:10.1017/9781009157896
  18. IPCC (2023) Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647
  19. Karakurt, I., Aydin, G., and Aydiner, K. (2012) Sources and mitigation of methane emissions by sectors: A Critical Review. Renewable Energy, v.39(1), p.40-48. https://doi.org/10.1016/j.renene.2011.09.006
  20. Liu, Y., Sharma, K.R., Murthy, S., Johnson, I., Evans, T., and Yuan, Z. (2014) On-line monitoring of methane in sewer air. Scientific Reports, v.4(1), https://doi.org/6637. 10.1038/srep06637
  21. Lauvaux, T., Giron, C., Mazzolini, M., d'Aspremont, A., Duren, R., Cusworth, D., Shindell, D., and Ciais, P. (2022) Global assessment of oil and gas methane ultra-emitters. Science, v.375(6580), p.557-561. https://doi.org/10.1126/science.abj4351
  22. Maasakkers, J.D., Varon, D.J., Elfarsdottir, A., McKeever, J., Jervis, D., Mahapatra, G., Pandey, S., Lorente, A., Borsdorff, T., Foorthuis, L.R., Schuit, B.J., Tol, P., van Kempen, T.A., van Hees, R., and Aben, I. (2022) Using satellites to uncover large methane emissions from landfills. Science Advances, v.8(31). https://doi.org/10.1126/sciadv.abn9683
  23. McLinden, C.A., Griffin, D., Davis, Z., Hempel, C., Smith, J., Sioris, C., Nassar, R., Moeini, O., Legault-Ouellet, E., and Malo, A. (2024). An independent evaluation of GHGSat methane emissions: Performance assessment. Journal of Geophysical Research: Atmospheres, v.129(15). https://doi.org/10.1029/2023JD039906
  24. Pandey, S., van Nistelrooij, M., Maasakkers, J.D., Sutar, P., Houweling, S., Varon, D.J., Tol, P., Gains, D., Worden, J., and Aben, I. (2023) Daily detection and quantification of methane leaks using Sentinel-3: a tiered satellite observation approach with Sentinel-2 and Sentinel-5p. Remote Sensing of Environment, v.296, 113716. https://doi.org/10.1016/j.rse.2023.113716
  25. Schuur, E.A., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., and Vonk, J.E. (2015) Climate change and the permafrost carbon feedback. Nature, v.520(7546), p.171-179. https://doi.org/10.1038/nature14338
  26. Sorg, D. (2021) Measuring livestock CH4 emissions with the laser methane detector: A review. Methane, v.1(1), p.38-57. https://doi.org/10.3390/methane1010004
  27. Sanchez-Garcia, E., Gorrono, J., Irakulis-Loitxate, I., Varon, D.J., and Guanter, L. (2022) Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques Discussions, v.15, p.1657-1674. https://doi.org/10.5194/amt-15-1657-2022
  28. Sanderson, K. (2022, September 30) What do Nord Stream methane leaks mean for climate change? Nature. https://doi.org/10.1038/d41586-022-03111-x
  29. Schuit, B.J., Maasakkers, J.D., Bijl, P., Mahapatra, G., Van den Berg, A.W., Pandey, S., Lorente, A., Borsdorff, T., Houweling, S., Varon, D.J., McKeever, J., Jervis, D., Girard, M., IrakulisLoitxate, I., Gorrono, J., Guanter, L., Cusworth, D.H., and Aben, I. (2023) Automated detection and monitoring of methane superemitters using satellite data. Atmospheric Chemistry and Physics Discussions, v.23, p.9071-9098. https://doi.org/10.5194/acp-23-9071-2023
  30. United States Environmental Protection Agency. (2023) Biden-Harris Administration finalizes standards to slash methane pollution, combat climate change, protect health, and bolster American innovation. https://www.epa.gov/newsreleases/bidenharris-administration-finalizes-standards-slash-methane-pollutioncombat-climate
  31. Van Amstel, A. (2012) Methane. A review. Journal of Integrative Environmental Sciences, v.9(sup1), p.5-30. https://doi.org/10.1080/1943815X.2012.694892
  32. Varon, D.J., Jacob, D.J., McKeever, J., Jervis, D., Durak, B.O., Xia, Y., and Huang, Y. (2018) Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmospheric Measurement Techniques, v.11(10), p.5673-5686. https://doi.org/10.5194/amt-11-5673-2018
  33. Varon, D.J., Jacob, D.J., Jervis, D., and McKeever, J. (2020) Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations. Environmental Science & Technology, v.54(16), p.10246-10253. https://doi.org/10.1021/acs.est.0c01213
  34. Varon, D.J., Jervis, D., McKeever, J., Spence, I., Gains, D., and Jacob, D.J. (2021) High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmospheric Measurement Techniques, v.14(4), p.2771-2785. https://doi.org/10.5194/amt-14-2771-2021
  35. Wang, H., Fan, X., Jian, H., and Yan, F. (2024) Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data. Remote Sensing, v.16(6), 1023. https://doi.org/10.3390/rs16061023
  36. Yakovlev, S.V., Sadovnikov, S.A., and Romanovskii, O.A. (2022) Mobile Airborne Lidar for Remote Methane Monitoring: Design, Simulation of Atmospheric Measurements and First Flight Tests. Remote Sensing, v.14(24), 6355. https://doi.org/10.3390/rs14246355