과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1064432).
참고문헌
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016) TensorFlow: A system for large-scale machine learning. 12th USENIX symposium on operating systems design and implementation (OSDI 16), p.265-283. doi: 10.48550/arXiv.1605.08695
- Almadani, M., Waheed, U.B., Masood, M., and Chen, Y. (2021) Dictionary learning with convolutional structure for seismic data denoising and interpolation. Geophysics, 86(5), p.V361-V374. doi: 10.1190/geo2019-0689.1
- Chen, Y., and Ma, J. (2014) Random noise attenuation by f-x empirical-mode decomposition predictive filtering. Geophysics, v.79(3), p.V81-V91. doi: 10.1190/geo2013-0080.1
- Gan, S., Chen, Y., Zu, S., Qu, S., and Zhong, W. (2015) Structure-oriented singular value decomposition for random noise attenuation of seismic data. Journal of Geophysics and Engineering, v.12(2), p.262-272. doi: 10.1088/1742-2132/12/2/262
- Ha, W., and Shin, C. (2013) Why do Laplace-domain waveform inversions yield long-wavelength results? Geophysics, v.78(4), p.R167-R173. doi: 10.1190/geo2012-0365.1
- Ha, W., and Shin, C. (2021a) Seismic random noise attenuation in the Laplace domain using singular value decomposition. IEEE Access, v.9, p.62029-62037. doi: 10.1109/ACCESS.2021.3074648
- Ha, W., and Shin, C. (2021b) Handling negative values for the logarithmic objective function in acoustic Laplace-domain full-waveform inversion using real variables. IEEE Transactions on Geoscience and Remote Sensing, v.59(7), p.6218-6224. doi: 10.1109/TGRS.2020.3019510
- Kingma, D.P., and Ba, J. (2015) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980
- Kopsinis, Y., and McLaughlin, S. (2009) Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Transactions on Signal Processing, v.57(4), p.1351-1362. doi: 10.1109/TSP.2009.2013885
- Li, J.-H., Zhang, Y.-J., Qi, R., and Liu, Q.H. (2017) Wavelet-based higher order correlative stacking for seismic data denoising in the curvelet domain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v.10(8), p.3810-3820. doi: 10.1109/JSTARS.2017.2685628
- Liu, B., Yue, J., Zuo, Z., Xu, X., Fu, C., Yang, S., and Jiang, P. (2022) Unsupervised deep learning for random noise attenuation of seismic data. IEEE Geoscience and Remote Sensing Letters, v.19, p.1-5. doi: 10.1109/LGRS.2021.3057631
- Liu, Z., Chen, Y., and Ma, J. (2018) Ground roll attenuation by synchrosqueezed curvelet transform. Journal of Applied Geophysics, v.151, p.246-262. doi: 10.1016/j.jappgeo.2018.02.016
- Meng, F., Fan, Q., and Li, Y. (2022) Self-supervised learning for seismic data reconstruction and denoising. IEEE Geoscience and Remote Sensing Letters, v.19, p.1-5. doi: 10.1109/LGRS.2021.3068132
- Nihei, K.T., and Li, X. (2007) Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD-PSD). Geophysical Journal International, v.169(3), p.1069-1078. doi: 10.1111/j.1365-246X.2006.03262.x
- Park, B., Ha, W., and Shin, C. (2020) A comparison of the preconditioning effects of different parameterization methods for monoparameter full waveform inversions in the Laplace domain. Journal of Applied Geophysics, v.172, 103883. doi: 10.1016/j.jappgeo.2019.103883
- Reddi, S.J., Kale, S., and Kumar, S. (2018) On the convergence of Adam and beyond. International Conference on Learning Representations, 1-23. doi: 10.48550/arXiv.1904.09237
- Ronneberger, O., Fischer, P., and Brox, T. (2015) U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer, Cham. doi: 10.1007/978-3-319-24574-4_28
- Saad, O.M., and Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, v.85(4), p.V367-V376. doi: 10.1190/geo2019-0468.1
- Shin, C., and Cha, Y.H. (2008) Waveform inversion in the Laplace domain. Geophysical Journal International, v.173(3), p.922-931. doi: 10.1111/j.1365-246X.2008.03768.x
- Shin, C., and Ha, W. (2008) A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics, v.73(5), p.VE119-VE133. doi.org/10.1190/1.2953978
- Shin, C., Ko, S., Kim, W., Min, D.-J., Yang, D., Marfurt, K.J., Shin, S., Yoon, K., and Yoon, C.H. (2003) Traveltime calculations from frequency-domain downward-continuation algorithms. Geophysics, v.68(4), p.1380-1388. doi: 10.1190/1.1598131
- Stoughton, D., Stefani, J., and Michell, S. (2001) 2D elastic model for wavefield investigations of subsalt objectives, deep water Gulf of Mexico. SEG Expanded Abstracts, v.20, p.1269-1272. doi: 10.1190/1.1816325
- Xue, Y.-J., Cao, J.-X., and Wang, X.-J. (2019) Inverse Q filtering via synchrosqueezed wavelet transform. Geophysics, v.84(2), p.V121-V132. doi: 10.1190/geo2018-0177.1
- Yang, L., Wang, S., Chen, X., Saad, O.M., Chen, W., Oboue, Y.A.S.I., and Chen, Y. (2021) Unsupervised 3-D random noise attenuation using deep skip autoencoder. IEEE Transactions on Geoscience and Remote Sensing, v.60, p.1-16. doi: 10.1109/TGRS.2021.3100455
- Yilmaz, O. (2001) Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists. doi: 10.1190/1.9781560801580
- Zhang, H., Yang, H., Li, H., Huang, G., and Ding, Z. (2018) Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform. Journal of Applied Geophysics, v.151, p.221-233. doi: 10.1016/j.jappgeo.2018.02.018
- Zhang, M., Liu, Y., Zhang, H., and Chen, Y. (2020) Incoherent noise suppression of seismic data based on robust low-rank approximation. IEEE Transactions on Geoscience and Remote Sensing, v.58(12), p.8874-8887. doi: 10.1109/TGRS.2020.2991438
- Zhong, T., Cheng, M., Dong, X., Li, Y., and Wu, N. (2022) Seismic random noise suppression by using deep residual U-Net. Journal of Petroleum Science and Engineering, v.209, 109901. doi: 10.1016/j.petrol.2021.109901
- Zhu, L., Liu, E., and McClellan, J.H. (2015) Seismic data denoising through multiscale and sparsity-promoting dictionary learning. Geophysics, v.80(6), p.WD45-WD57. doi: 10.1190/geo2015-0047.1
- Zhu, W., Mousavi, S.M., and Beroza, G.C. (2019) Seismic signal denoising and decomposition using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, v.57(11), p.9476-9488. doi: 10.1109/TGRS.2019.2926772