참고문헌
- M. W. Alomari, A companion of Dragomir's generalization of the Ostrowski inequality and applications to numerical integration. Ukr. Math. J. 64 (2012), no. 4, 491-510.
- M. W. Alomari, A generalization of companion inequality of Ostrowski's type for mappings whose first derivatives are bounded and applications and in numerical integration, Trans. J. Math. Mech. 4 (2012), no. 2, 103-109.
- M. W. Alomari and S. S. Dragomir, Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration. Jordan J. Math. Stat. 7 (2014), no. 2, 89-108.
- N. Boutelhig, B. Meftah, W. Saleh, and A. Lakhdari, Parameterized Simpson-like inequalities for differentiable Bounded and Lipschitzian functions with application example from management science. J. Appl. Math. Stat. Inform. 19 (2023), no. 1, 79-91.
- P. Cerone, S. S. Dragomir, and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications. Demonstratio Math. 32 (1999), no. 4, 697-712.
- P. Cerone, S. S. Dragomir, J. Roumeliotis, and J. Sunde, A new generalization of the trapezoid formula for n-time differentiable mappings and applications. Demonstratio Math. 33 (2000), no. 4, 719-736.
- P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, 65-134, G.A. Anastassiou (Ed), Chapman & Hall/CRC Press, New York, 2000.
- S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L1 norm and applications to some special means and to some numerical quadrature rules. Tamkang J. Math. 28 (1997), no. 3, 239-244.
- S. S. Dragomir, On Simpson's quadrature formula for differentiable mappings whose derivatives belong to Lp spaces and applications, J. KSIAM 22 (1998), 57-65.
- S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 30 (1999), no. 1, 53-58.
- S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson's inequality and applications. J. Inequal. Appl. 5 (2000), no. 6, 533-579.
- S. S. Dragomir, P. Cerone, and J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. Appl. Math. Lett. 13 (2000), no. 1, 19-25.
- S. S. Dragomir, On the midpoint quadrature formula for Lipschitzian mappings and applications. Kragujevac J. Math. 22 (2000), 5-11.
- S. S. Dragomir, Y.-J. Cho, and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489-501.
- S. S. Dragomir, Some companions of Ostrowski's inequality for absolutely continuous functions and applications, Facta Univ. Ser. Math. Inform. 19 (2004), 1-16.
- S. S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 5 (2014), no. 1, 89-97.
- S. S. Dragomir, Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation. Acta Univ. Sapientiae Math. 12 (2020), no. 1, 30-53.
- S. Erden, S. Iftikhar, P. Kumam, and P. Thounthong, On error estimations of Simpson's second type quadrature formula, Math. Methods Appl. Sci. (2020), 1-13.
- A. Kashuri, B. Meftah, and P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications: Some weighted Simpson type inequalities. J. Fract. Calc. Nonlinear Syst. 1 (2020), no. 1, 75-94.
- B. Meftah, M. Merad, N. Ouanas, and A. Souahi, Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex. Acta Comment. Univ. Tartu. Math. 23 (2019), no. 2, 163-178.
- B. Meftah, A. Lakhdari, and D. C. Benchettah, Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions, Comput. Math. Model. 33 (2022), no. 3, 330-353.
- M. Z. Sarikaya, On the generalized Ostrowski type inequalities for co-ordinated convex functions. Filomat 37 (2023), no. 22, 7351-7366.
- W. Saleh, B. Meftah, and A. Lakhdari, Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 14 (2023), no. 4, 63-76.
- W. Saleh, A. Lakhdari, T. Abdeljawad, and B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl. 2023, Paper No. 122, 18 pp.
- W. S. Zhu, B. Meftah, H. Xu, F. Jarad, and A. Lakhdari, On parameterized inequalities for fractional multiplicative integrals, Demonstr. Math. 57 (2024), no. 1, Paper No. 20230155, 17 pp.