DOI QR코드

DOI QR Code

INVESTIGATING THE DUAL QUATERNION EXTENSION OF THE 𝓓𝓖𝓒 LEONARDO SEQUENCE

  • Cigdem Zeynep Yilmaz (Department of Mathematics, Istanbul Bilgi University) ;
  • Gulsum Yeliz Sacli (Department of Mathematics, Yildiz Technical University)
  • 투고 : 2024.07.02
  • 심사 : 2024.08.05
  • 발행 : 2024.12.20

초록

In this study, we introduce a new generalization of the Leonardo sequence, dual quaternions with the 𝓓𝓖𝓒 Leonardo sequence coefficients, depending on the parameter p ∈ ℝ. This generalization gives dual quaternions with the dual-complex Leonardo sequence for 𝖕 = -1, dual quaternions with the hyper-dual Leonardo sequence for 𝖕 = 0, and dual quaternions with the dual-hyperbolic Leonardo sequence for 𝖕 = 1. The basic algebraic structures and some special characteristic relations are presented, as well as the Binet's formula, generating function, d'Ocagne's, Catalan's, Cassini's, and Tagiuri's identities.

키워드

과제정보

This work has been supported by TUBITAK BIDEB 2209-A Research Project Support Programme for Undergraduate Students 2022 1st Term (The Scientific and Technological Research Council of Turkiye-Directorate of Science Fellowships and Grant Programmes) under support number 1919B012203959.

참고문헌

  1. M. Akar, S. Yuce, and S. S,ahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, JCSCM. 8 (2018), no. 1, 1-6.
  2. Y. Alp and E. G. Kocer, Hybrid Leonardo numbers, Chaos Solitons Fractals. 150 (2021).
  3. Y. Alp and E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), no. 1, 183-189.
  4. P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. 89 (2020), no. 1, 75-86.
  5. P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers. 20 (2020).
  6. H. H. Cheng and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, ASME 24th Biennial Mechanisms Conference 18-22 August 1996, Irvine, CA.
  7. H. H. Cheng and S. Thompson, Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers, ASME. J. Mech. Des. 121 (1999), no. 2, 200- 205.
  8. W. K. Clifford, Preliminary sketch of bi-quaternions, Proc. Lond. Math. Soc. 4 (1873), 381-395.
  9. W. K. Clifford, Mathematical Papers (ed. R. Tucker), AMS Chelsea Publishing, New York, 1968.
  10. A. Cohen and M. Shoham, Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory 125 (2018), 101-110.
  11. J. D. Jr. Edmonds, Relativistic Reality: A Modern View, World Scientific, Singapore, 1997.
  12. Z. Ercan and S. Yuce, On properties of the dual quaternions, Eur. J. Pure Appl. Math. 4 (2011), 142-146.
  13. J. A. Fike and J. J. Alonso, Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in Computational Science and Engineering book series (LNCSE). 87 (2011), no. 201, 163-173.
  14. J. A. Fike, S. Jongsma, J. J. Alonso, and E. Van Der. Weide, Optimization with gradient and hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference. 27-30 June 2011, Honolulu, Hawaii.
  15. P. Fjelstad, Extending special relativity via the perplex numbers, Am. J. Phys. 54 (1986), no. 5, 416-422.
  16. N. Gurses, Bringing Together Dual-Generalized Complex Numbers and Dual Quaternions via Fibonacci and Lucas Numbers, University Politechnica Of Bucharest Scientific Bulletin-Series-A-Applied Mathematics And Physics. 83 (2021), no. 3, 21-34.
  17. N. Gurses, G. Y. Senturk, and S. Yuce, A study on dual-generalized complex and hyperbolic-generalized complex number, GAZI U J SCI. 34 (2021), no. 1, 180-194.
  18. N. Gurses, G. Y. Senturk, and S. Yuce, A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers, Sigma J. Eng. Nat. Sci. 40 (2022), no. 1, 179- 187.
  19. W. R. Hamilton, On quaternions, or on a new system of imaginaries in algebra, London Edinburgh Philos. Mag. & J. Sci. 25 (1844), no. 169, 489-495.
  20. W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
  21. W. R. Hamilton, Elements of Quaternions, Chelsea Pub. Com., New York, 1969.
  22. A. A. Harkin and J. B. Harkin, Geometry of generalized complex numbers, Math. Mag. 77 (2004), 118-129.
  23. Z. Isbilir, M. Akyigit, and M. Tosun, Pauli-Leonardo quaternions, Notes on Number Theory and Discrete Mathematics. 29 (2023), no. 1, 1-16.
  24. I. Kantor and A. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, New York, 1989.
  25. S. O. Karakus, S. K. Nurkan, and M. Turan, Hyper-dual Leonardo numbers, Konuralp J. Math. 10 (2022), no. 2, 269-275.
  26. A. Karatas, On complex Leonardo numbers, Notes Numb. Thy. Disc. Math. 28 (2022), no. 3, 458-465.
  27. T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
  28. V. Majernik and M. Nagy, Quaternionic form of Maxwell's equations with sources, Lett. Nuovo Cimento. 16 (1976), 265-268.
  29. V. Majernik, Galilean transformation expressed by the dual four-component numbers, Acta Phys. Polon. A. 87 (1995), no. 6, 919-923.
  30. V. Majernik, Multicomponent number systems, Acta Phys. Polon. A. 90 (1996), no. 3, 491-498.
  31. V. Majernik, Quaternion formulation of the Galilean space-time transformation, Acta Phys. Slovaca. 56 (2006), no. 1, 9-14.
  32. M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Os numeros hibridos de Leonardo (Leonardo's hybrid numbers), Ciencia e Natura. 43 (2021), no. 82, 1-19.
  33. M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Os biquaternions elipticos de Leonardo (Leonardo's elliptical biquaternions), Revista Eletronica Paulista de Matematica Fonte. 21 (2021), 130-139.
  34. M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Hybrid quaternions of Leonardo, Trends Comput. Appl. Math. 23 (2022), no. 1, 51-62.
  35. F. Messelmi, Dual-complex numbers and their holomorphic functions, hal-01114178, 2015.
  36. S. K. Nurkan and I. A. Guven, Ordered Leonardo quadruple numbers, Symmetry. 15 (2023), no. 149.
  37. H. Ozimamoglu, A new generalization of Leonardo hybrid numbers with q-integers, Indian J. Pure Appl. Math. 55 (2023).
  38. E. Pennestri and R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn. 18 (2007), no. 3, 323-344.
  39. A. G. Shannon, A note on generalized Leonardo numbers, Notes Numb. Thy. Disc. Math. 25 (2019), no. 3, 97-101.
  40. A. G. Shannon and O. Deveci, A note on generalized and extended Leonardo sequences, Notes Numb. Thy. Disc. Math. 28 (2022), no. 1, 109-114.
  41. M. Shattuck, Combinatorial proofs of identities for the generalized Leonardo numbers, Notes Numb. Thy. Disc. Math. 28 (2022), no. 4, 778-790.
  42. G. Sobczyk, The hyperbolic number plane, Coll. Math. J. 26 (1995), no. 4, 268-280.
  43. Y. Soykan, Special cases of generalized Leonardo numbers Modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline J. Math. Sci. 11 (2023), no. 2, 317-342.
  44. E. Study, Geometrie der dynamen, Mathematiker Deutschland Publisher, Leibzig, 1903.
  45. G. Y. Senturk, A brief study on dual-generalized complex Leonardo numbers, 5th International Conference on Mathematical Advances and Applications (ICOMAA) 11-14 May 2022, Istanbul, Turkiye, 104.
  46. E. Tan and H. H. Leung, On Leonardo p-numbers, Integers 23 (2023), A7.
  47. R. P. M. Vieira, M.C. dos S. Mangueira, F. R. V. Alves, and P. M. M. C. Catarino, A forma matricial dos numeros de Leonardo, Ciencia e Natura 42 (2020).
  48. R. P. M. Vieira, M.C. dos S. Mangueira, F. R. V. Alves, and P. M. M. C. Catarino, Os numeros hiperbolicos de Leonardo (Leonardo's hyperbolic numbers), Cadernos do IME-Serie Matematica (2021), 113-124.
  49. I. M. Yaglom, Complex Numbers in Geometry, Academic Press, New York, London, 1968.
  50. Y . Yayli and E. E. Tutuncu, Generalized Galilean transformations and dual quaternions, Scientia Magna 5 (2009), no. 1, 94-100.
  51. C. Z. Yilmaz and G. Y. Sacli, On Dual Quaternions with k-Generalized Leonardo Components, J. New Theory 44 (2023), 31-42.
  52. C. Z. Yilmaz and G. Y. Sacli, On some identities for the DGC Leonardo sequence, Notes Numb. Thy. Disc. Math. 30 (2024), no. 2, 253-270.
  53. S. Yuce and F. T. Aydin, A new aspect of dual Fibonacci quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 873-884.