과제정보
This work has been supported by TUBITAK BIDEB 2209-A Research Project Support Programme for Undergraduate Students 2022 1st Term (The Scientific and Technological Research Council of Turkiye-Directorate of Science Fellowships and Grant Programmes) under support number 1919B012203959.
참고문헌
- M. Akar, S. Yuce, and S. S,ahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, JCSCM. 8 (2018), no. 1, 1-6.
- Y. Alp and E. G. Kocer, Hybrid Leonardo numbers, Chaos Solitons Fractals. 150 (2021).
- Y. Alp and E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), no. 1, 183-189.
- P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. 89 (2020), no. 1, 75-86.
- P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers. 20 (2020).
- H. H. Cheng and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, ASME 24th Biennial Mechanisms Conference 18-22 August 1996, Irvine, CA.
- H. H. Cheng and S. Thompson, Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers, ASME. J. Mech. Des. 121 (1999), no. 2, 200- 205.
- W. K. Clifford, Preliminary sketch of bi-quaternions, Proc. Lond. Math. Soc. 4 (1873), 381-395.
- W. K. Clifford, Mathematical Papers (ed. R. Tucker), AMS Chelsea Publishing, New York, 1968.
- A. Cohen and M. Shoham, Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory 125 (2018), 101-110.
- J. D. Jr. Edmonds, Relativistic Reality: A Modern View, World Scientific, Singapore, 1997.
- Z. Ercan and S. Yuce, On properties of the dual quaternions, Eur. J. Pure Appl. Math. 4 (2011), 142-146.
- J. A. Fike and J. J. Alonso, Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in Computational Science and Engineering book series (LNCSE). 87 (2011), no. 201, 163-173.
- J. A. Fike, S. Jongsma, J. J. Alonso, and E. Van Der. Weide, Optimization with gradient and hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference. 27-30 June 2011, Honolulu, Hawaii.
- P. Fjelstad, Extending special relativity via the perplex numbers, Am. J. Phys. 54 (1986), no. 5, 416-422.
- N. Gurses, Bringing Together Dual-Generalized Complex Numbers and Dual Quaternions via Fibonacci and Lucas Numbers, University Politechnica Of Bucharest Scientific Bulletin-Series-A-Applied Mathematics And Physics. 83 (2021), no. 3, 21-34.
- N. Gurses, G. Y. Senturk, and S. Yuce, A study on dual-generalized complex and hyperbolic-generalized complex number, GAZI U J SCI. 34 (2021), no. 1, 180-194.
- N. Gurses, G. Y. Senturk, and S. Yuce, A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers, Sigma J. Eng. Nat. Sci. 40 (2022), no. 1, 179- 187.
- W. R. Hamilton, On quaternions, or on a new system of imaginaries in algebra, London Edinburgh Philos. Mag. & J. Sci. 25 (1844), no. 169, 489-495.
- W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
- W. R. Hamilton, Elements of Quaternions, Chelsea Pub. Com., New York, 1969.
- A. A. Harkin and J. B. Harkin, Geometry of generalized complex numbers, Math. Mag. 77 (2004), 118-129.
- Z. Isbilir, M. Akyigit, and M. Tosun, Pauli-Leonardo quaternions, Notes on Number Theory and Discrete Mathematics. 29 (2023), no. 1, 1-16.
- I. Kantor and A. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, New York, 1989.
- S. O. Karakus, S. K. Nurkan, and M. Turan, Hyper-dual Leonardo numbers, Konuralp J. Math. 10 (2022), no. 2, 269-275.
- A. Karatas, On complex Leonardo numbers, Notes Numb. Thy. Disc. Math. 28 (2022), no. 3, 458-465.
- T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
- V. Majernik and M. Nagy, Quaternionic form of Maxwell's equations with sources, Lett. Nuovo Cimento. 16 (1976), 265-268.
- V. Majernik, Galilean transformation expressed by the dual four-component numbers, Acta Phys. Polon. A. 87 (1995), no. 6, 919-923.
- V. Majernik, Multicomponent number systems, Acta Phys. Polon. A. 90 (1996), no. 3, 491-498.
- V. Majernik, Quaternion formulation of the Galilean space-time transformation, Acta Phys. Slovaca. 56 (2006), no. 1, 9-14.
- M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Os numeros hibridos de Leonardo (Leonardo's hybrid numbers), Ciencia e Natura. 43 (2021), no. 82, 1-19.
- M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Os biquaternions elipticos de Leonardo (Leonardo's elliptical biquaternions), Revista Eletronica Paulista de Matematica Fonte. 21 (2021), 130-139.
- M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Hybrid quaternions of Leonardo, Trends Comput. Appl. Math. 23 (2022), no. 1, 51-62.
- F. Messelmi, Dual-complex numbers and their holomorphic functions, hal-01114178, 2015.
- S. K. Nurkan and I. A. Guven, Ordered Leonardo quadruple numbers, Symmetry. 15 (2023), no. 149.
- H. Ozimamoglu, A new generalization of Leonardo hybrid numbers with q-integers, Indian J. Pure Appl. Math. 55 (2023).
- E. Pennestri and R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn. 18 (2007), no. 3, 323-344.
- A. G. Shannon, A note on generalized Leonardo numbers, Notes Numb. Thy. Disc. Math. 25 (2019), no. 3, 97-101.
- A. G. Shannon and O. Deveci, A note on generalized and extended Leonardo sequences, Notes Numb. Thy. Disc. Math. 28 (2022), no. 1, 109-114.
- M. Shattuck, Combinatorial proofs of identities for the generalized Leonardo numbers, Notes Numb. Thy. Disc. Math. 28 (2022), no. 4, 778-790.
- G. Sobczyk, The hyperbolic number plane, Coll. Math. J. 26 (1995), no. 4, 268-280.
- Y. Soykan, Special cases of generalized Leonardo numbers Modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline J. Math. Sci. 11 (2023), no. 2, 317-342.
- E. Study, Geometrie der dynamen, Mathematiker Deutschland Publisher, Leibzig, 1903.
- G. Y. Senturk, A brief study on dual-generalized complex Leonardo numbers, 5th International Conference on Mathematical Advances and Applications (ICOMAA) 11-14 May 2022, Istanbul, Turkiye, 104.
- E. Tan and H. H. Leung, On Leonardo p-numbers, Integers 23 (2023), A7.
- R. P. M. Vieira, M.C. dos S. Mangueira, F. R. V. Alves, and P. M. M. C. Catarino, A forma matricial dos numeros de Leonardo, Ciencia e Natura 42 (2020).
- R. P. M. Vieira, M.C. dos S. Mangueira, F. R. V. Alves, and P. M. M. C. Catarino, Os numeros hiperbolicos de Leonardo (Leonardo's hyperbolic numbers), Cadernos do IME-Serie Matematica (2021), 113-124.
- I. M. Yaglom, Complex Numbers in Geometry, Academic Press, New York, London, 1968.
- Y . Yayli and E. E. Tutuncu, Generalized Galilean transformations and dual quaternions, Scientia Magna 5 (2009), no. 1, 94-100.
- C. Z. Yilmaz and G. Y. Sacli, On Dual Quaternions with k-Generalized Leonardo Components, J. New Theory 44 (2023), 31-42.
- C. Z. Yilmaz and G. Y. Sacli, On some identities for the DGC Leonardo sequence, Notes Numb. Thy. Disc. Math. 30 (2024), no. 2, 253-270.
- S. Yuce and F. T. Aydin, A new aspect of dual Fibonacci quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 873-884.