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INVESTIGATING THE DUAL QUATERNION EXTENSION

OF THE DGC LEONARDO SEQUENCE

Çiğdem Zeynep Yılmaz and Gülsüm Yeliz Saçlı∗

Abstract. In this study, we introduce a new generalization of the
Leonardo sequence, dual quaternions with the DGC Leonardo sequence

coefficients, depending on the parameter p ∈ R. This generalization gives

dual quaternions with the dual-complex Leonardo sequence for p = −1,
dual quaternions with the hyper-dual Leonardo sequence for p = 0,

and dual quaternions with the dual-hyperbolic Leonardo sequence for

p = 1. The basic algebraic structures and some special characteristic re-
lations are presented, as well as the Binet’s formula, generating function,

d’Ocagne’s, Catalan’s, Cassini’s, and Tagiuri’s identities.

1. Introduction

Hypercomplex numbers, such as quaternions, tessarines, coquaternions, bi-
quaternions, and octonions, find wide application in fields such as physics,
geometry, robotics, quantum mechanics, and computer graphics due to their
ability to represent rotations and transformations in higher-dimensional spaces.
In mathematics, generalized complex numbers Cp are well-known extensions of
complex numbers within the realm of hypercomplex numbers, [22, 24]. These
numbers are defined in the form z = a1 + a2J , where a1, a2 ∈ R. Here, J
denotes the generalized complex unit satisfying J2 = p, J ̸∈ R, p ∈ R. The
special cases of generalized complex numbers Cp include:

• complex numbers C for p = −1 (see [49]),
• hyperbolic numbers (double, binary, split-complex, perplex numbers) H
for p = 1 (see [9, 15,42]),

• dual numbers D for p = 0 (see [38,44]).

The dual-generalized complex numbers (DGC) appear as a generalization of
both generalized complex numbers and dual numbers, [17]. The set of DGC
numbers is defined in [17] by the following way:

DCp =
{
ã = z1 + z2ε : z1, z2 ∈ Cp, ε2 = 0, ε ̸= 0, ε ̸∈ R

}
.
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678 Çiğdem Zeynep Yılmaz and Gülsüm Yeliz Saçlı

Each DGC number is of the form ã = z1 + z2ε = a1 + a2J + a3ε + a4Jε,
where a1, a2, a3, a4 are real components, and the DGC units {J, ε, Jε} satisfy
the following conditions:

(1) ε2 = 0, J2 = p, Jε = εJ, (Jε)2 = 0.

The set DCp forms a commutative ring with unity and a vector space over
real numbers, [17]. For special values of p, DGC numbers correspond to the
following well-known 4-component numbers:

• dual-complex numbers (complex-dual numbers) for p = −1 (see [6,7, 30,
35]),

• dual-hyperbolic numbers (hyperbolic-dual numbers) for p = 1 (see [1,
30]),

• hyper-dual numbers for p = 0 (see [10,13,14]).

Furthermore, real quaternions extend complex numbers into 4-dimensions,
defined as q = q0 + q1i + q2j + q3k, where q0, q1, q2, q3 are real components,
and {i, j,k} are non-real quaternionic units with the following multiplication
schema (see [19–21]):

i2 = −1, j2 = −1, k2 = −1,
ij = −ji = k, jk = −kj = i, ki = −ik = j.

Changing conditions in the multiplication schema gives various type of
quaternions. The most well-known generalization of dual numbers is dual
quaternions, [8, 11, 12, 28, 29, 31, 50]. It is in the same form but with differ-
ent multiplication conditions for quaternionic units as

(2)
i2 = 0, j2 = 0, k2 = 0,

ij = ji = 0, jk = kj = 0, ki = ik = 0.

In addition to these subjects, sequences play a crucial role in mathematics,
particularly in number theory. Sequences like the Fibonacci, Lucas, Leonardo,
Pell, Narayana’s cows, Horadam, and Oresme sequences are extensively studied.
The Leonardo sequence is defined by second-order linear recurrence relations
and explored in various contexts. The Leonardo sequence is defined recursively
by the following non-homogeneous recurrence relation:

Len = Len−1 + Len−2 + 1, (n ≥ 2)

with the initial values Le0 = Le1 = 1, or the homogeneous recurrence relation:

Len+1 = 2Len − Len−2, (n ≥ 2)

with the initial values Le0 = Le1 = 1 and Le2 = 3. Here, Len is the
n-th Leonardo number, [4]. Defining sequences recursively with two or more
components is also popular in the literature. Many studies of Leonardo num-
bers have presented in [2–5,23,25,26,32–34,36,37,39–41,43,45–48,51,52].
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Recently, the DGC Leonardo sequence has been introduced, characterized
by 4-component terms and defined recursively [45,52]. The n-th DGC Leonardo
number is expressed as:

L̃en = Len + Len+1J + Len+2ε+ Len+3Jε.

The DGC Leonardo sequence satisfies the following second-order
non-homogeneous relation:

(3) L̃en = L̃en−1 + L̃en−2 + 1̃, (n ≥ 2),

where 1̃ = 1 + J + ε + Jε with the initial values L̃e0 = 1 + J + 3ε + 5Jε,
L̃e1 = 1 + 3J + 5ε + 9Jε. The homogeneous recurrence relation of the DGC
Leonardo sequence is

L̃en+1 = 2L̃en − L̃en−2

with the initial values L̃e0 = 1 + J + 3ε+ 5Jε, L̃e1 = 1 + 3J + 5ε+ 9Jε, and
L̃e2 = 3+5J+9ε+15Jε. For further information we refer the reader to [45,52].

This paper focuses on studying dual quaternions with the DGC Leonardo
numbers coefficients for p ∈ R. It explores special relations including the
Binet’s formula, generating function, and various identities such as Catalan’s,
Cassini’s, d’Ocagne’s, and Tagiuri’s identities.

2. Preliminaries

In this section, we recall some basic notations and results related to the DGC
Fibonacci and DGC Lucas sequences (see [18]), as well as the DGC Leonardo
sequence (see [45,52]).

Definition 2.1. The n-th DGC Fibonacci number is of the form

F̃n = Fn + Fn+1J + Fn+2ε+ Fn+3Jε,

where Fn is the n-th Fibonacci number and satisfies the following second-order
linear recurrence relation:

F̃n = F̃n−1 + F̃n−2, (n ≥ 2)

with the initial values F̃0 = J + ε+2Jε and F̃1 = 1+ J +2ε+3Jε. Similarly,
the n-th DGC Lucas number is of the form

L̃n = Ln + Ln+1J + Ln+2ε+ Ln+3Jε,

where Ln is the n-th Lucas number and satisfies the following second-order
linear recurrence relation:

L̃n = L̃n−1 + L̃n−2, (n ≥ 2)

with the initial values L̃0 = 2+ J +3ε+4Jε and L̃1 = 1+3J +4ε+7Jε, [18].
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Theorem 2.2. For a positive integer n, the fundamental relations between
the DGC Fibonacci, DGC Lucas, and DGC Leonardo sequences are as follows:

L̃en = 2F̃n+1 − 1̃,

L̃en = 2

(
L̃n + L̃n+2

5

)
− 1̃,

L̃en+3 =
L̃n+1 + L̃n+7

5
− 1̃,

L̃en = L̃n+2 − F̃n+2 − 1̃,

where 1̃ = 1 + J + ε+ Jε, [52].

Theorem 2.3. For a positive integer n, the summation formulas related to
the DGC Leonardo sequence are:

n∑
j=0

L̃ej = L̃en+2 − Ñn+2 − (J + 2ε+ 5Jε),

n∑
j=0

L̃e2j = L̃e2n+1 − Ñn − (J + Jε),

n∑
j=0

L̃e2j+1 = L̃e2n+2 − Ñn+2 + (J − Jε),

where Ñn = n+ (n+ 1)J + (n+ 2)ε+ (n+ 3)Jε, [45, 52].

3. Dual quaternion generalization of the DGC Leonardo sequence

In the following definition, we determine a dual quaternionic sequence with
the DGC Leonardo number components depending on parameter p.

Definition 3.1. The n-th dual quaternion with theDGC Leonardo sequence
coefficients (the n-th DGC Leonardo dual quaternion), denoted by Q̃Len, is
defined in the following way:

(4) Q̃Len = L̃en + L̃en+1i+ L̃en+2j + L̃en+3k,

where {i, j, k} are the dual quaternionic units that satisfy the conditions given

in equation (2) and L̃en is the n-th DGC Leonardo number.

This dual quaternion is extended through the DGC Leonardo sequence to
obtain dual quaternion with dual-complex, dual-hyperbolic, and hyper-dual
Leonardo sequences coefficients for special cases.

It should be noted that the DGC units {J, ε, Jε} which satisfy the conditions
given in equation (1) commute with the dual quaternionic units {i, j, k}. That
is, iJ = Ji, iε = εi and iJε = Jεi. This condition also holds for the other
quaternionic units. Also, the dual quaternionic units {i, j, k} are distinct from
the usual dual unit for p = 0.
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Writing the coefficients more clearly gives that

Q̃Len = L̃en + L̃en+1i+ L̃en+2j + L̃en+3k
= (Len + Len+1J + Len+2ε+ Len+3Jε)

+(Len+1 + Len+2J + Len+3ε+ Len+4Jε)i
+(Len+2 + Len+3J + Len+4ε+ Len+5Jε)j
+(Len+3 + Len+4J + Len+5ε+ Len+6Jε)k

= (Len + Len+1i+ Len+2j + Len+3k)
+(Len+1 + Len+2i+ Len+3j + Len+4k)J
+(Len+2 + Len+3i+ Len+4j + Len+5k)ε
+(Len+3 + Len+4i+ Len+5j + Len+6k)Jε

= L̂en + L̂en+1J + L̂en+2ε+ L̂en+3Jε.

Here, L̂en is referred to as the n-th dual Leonardo quaternion (seen as
an ordered Leonardo quadruple number in [36]). It is clear that there is no
difference between the dual quaternionic sequence with DGC Leonardo number
coefficients and the DGC sequence with dual Leonardo quaternions coefficients.
We denote the set of all these dual quaternions with theDGC Leonardo sequence
coefficients briefly by QLe.

Using operations within dual quaternion algebra allows for defining basic
arithmetic operations. Let Q̃Len, Q̃Lem ∈ QLe. In general, a dual quater-
nion Q̃Len has two parts, a scalar part SQ̃Len

= L̃en, and a vector part

VQ̃Len
= L̃en+1i + L̃en+2j + L̃en+3k. An element Q̃Le†n is called the conju-

gate of Q̃Len is defined by Q̃Le†n = SQ̃Len
− VQ̃Len

. Equality and addition (and

hence subtraction) are component-wise defined respectively as follows:

Q̃Len = Q̃Lem ↔ SQ̃Len
= SQ̃Lem

, VQ̃Len
= VQ̃Lem

and

Q̃Len ± Q̃Lem =
(
SQ̃Len

± SQ̃Lem

)
+
(
VQ̃Len

± VQ̃Lem

)
.

The addition is commutative and associative. Also, the multiplication of Q̃Len
and Q̃Lem is calculated as:

Q̃LenQ̃Lem = SQ̃Len
SQ̃Lem

+ SQ̃Len
VQ̃Lem

+ SQ̃Lem
VQ̃Len

.

The multiplication is commutative, associative, and distributive over addition.

Theorem 3.2. The n-th DGC Leonardo dual quaternion satisfies the fol-
lowing non-homogeneous recurrence:

(5) Q̃Len = Q̃Len−1 + Q̃Len−2 + Ã, (n ≥ 2)

with initial conditions Q̃Le0 and Q̃Le1, where Ã = (1+J+ε+Jε)(1+ i+j+k).
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Proof. Substituting the non-homogeneous recurrence relation of the DGC
Leonardo sequence in equation (3) into equation (4) yields that

Q̃Len = (L̃en−1 + L̃en−2 + 1̃) + (L̃en + L̃en−1 + 1̃)i

+(L̃en+1 + L̃en + 1̃)j + (L̃en+2 + L̃en+1 + 1̃)k

= (L̃en−1 + L̃eni+ L̃en+1j + L̃en+2k)

+(L̃en−2 + L̃en−1i+ L̃enj + L̃en+1k)
+1̃(1 + i+ j + k)

= Q̃Len−1 + Q̃Len−2 + Ã.

Theorem 3.3. The homogeneous recurrence relation of the DGC Leonardo
dual quaternion sequence is

(6) Q̃Len+1 = 2Q̃Len − Q̃Len−2, (n ≥ 2)

with initial conditions Q̃Le0, Q̃Le1 and Q̃Le2.

Proof. From equation (5) we see that

Q̃Len+1 = Q̃Len + Q̃Len−1 + Ã

= Q̃Len + (Q̃Len − Q̃Len−2 − Ã) + Ã

= 2Q̃Len − Q̃Len−2.

In what follows, α̃ = 1 + αJ + α2ε+ α3Jε, β̃ = 1 + βJ + β2ε+ β3Jε,
Ã = 1̃(1+i+j+k), α̃∗ = α̃(1+αi+α2j+α3k), and β̃∗ = β̃(1+βi+β2j+β3k).

Theorem 3.4. For a positive integer n, the Binet’s formula of the n-th
DGC Leonardo dual quaternion Q̃Len is as follows:

(7) Q̃Len =
2α̃∗αn+1 − 2β̃∗βn+1

α− β
− Ã.

Proof. We begin by recalling the Binet’s formula of the DGC Leonardo se-
quence (see [45])

L̃en = 2

(
α̃αn+1 − β̃βn+1

α− β

)
− 1̃.

Substituting this into equation (4) we see that

Q̃Len =
2α̃(1 + αi+ α2j + α3k)αn+1 − 2β̃(1 + βi+ β2j + β3k)βn+1

α− β
−1̃(1 + i+ j + k)

=
2α̃∗αn+1 − 2β̃∗βn+1

α− β
− Ã.
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Theorem 3.5. For a positive integer n, the generating function for the
DGC Leonardo dual quaternionic sequence is as follows:

G(x) =
∞∑

n=0

Q̃Lenx
n =

Q̃Le0 + (Q̃Le1 − 2Q̃Le0)x+ (Q̃Le2 − 2Q̃Le1)x
2

1− 2x+ x3
,

where 1− 2x+ x3 ̸= 0.

Proof. Let us assume that G(x) =
∞∑

n=0

Q̃Lenx
n be a generating function of

Q̃Len. This gives

G(x) = Q̃Le0 + Q̃Le1x+ Q̃Le2x
2 +

∞∑
n=3

Q̃Lenx
n.

From equation (6) it follows that

G(x) = Q̃Le0 + Q̃Le1x+ Q̃Le2x
2 +

∞∑
n=3

(2Q̃Len−1 − Q̃Len−3)x
n

= Q̃Le0 + Q̃Le1x+ Q̃Le2x
2 + 2x

(( ∞∑
n=0

Q̃Lenx
n

)
− Q̃Le0 − Q̃Le1x

)
−x3

∞∑
n=0

Q̃Lenx
n.

The proof is completed by showing that

(1− 2x+ x3)G(x) = Q̃Le0 +
(
Q̃Le1 − 2Q̃Le0

)
x+

(
Q̃Le2 − 2Q̃Le1

)
x2,

with 1− 2x+ x3 ̸= 0.

3.1. Auxiliary Results

In this subsection, we formulate the key concepts of the DGC Leonardo dual
quaternionic sequence. Particularly, the Catalan’s, Cassini’s, d’Ocagne’s, and
Tagiuri’s identities are important in sequences because they establish relations
between their numbers.

Theorem 3.6. Let Q̃Len be the n-th DGC Leonardo dual quaternion, Q̃n

be the n-th DGC Fibonacci dual quaternion, and K̃n be the n-th DGC Lucas
dual quaternion. Then the following relations hold:

1) Q̃Len = 2Q̃n+1 − Ã,

2) Q̃Len = Q̃n + K̃n − Ã,

Q̃n is of the form Q̃n = F̃n + F̃n+1i + F̃n+2j + F̃n+3k, where {i, j, k} are the dual

quaternionic units and F̃n is the n-th DGC Fibonacci number (see [16]).

K̃n is of the form K̃n = L̃n + L̃n+1i + L̃n+2j + L̃n+3k, where {i, j, k} are the dual

quaternionic units and L̃n is the n-th DGC Lucas number (see [16]).
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3) Q̃Len =
2
(
K̃n + K̃n+2

)
5

− Ã,

4) Q̃Len+3 =
K̃n+1 + K̃n+7

5
− Ã,

5) Q̃Len = K̃n+2 − Q̃n+2 − Ã.

Proof. If we use the corresponding relations between the DGC Leonardo,
DGC Fibonacci, and DGC Lucas sequences in Theorem 2.2, then we get the
desired results.

1) Applying equation (4) and L̃en = 2F̃n+1 − 1̃ (see Theorem 2.2), we can
see that

Q̃Len = L̃en + L̃en+1i+ L̃en+2j + L̃en+3k

= (2F̃n+1 − 1̃) + (2F̃n+2 − 1̃)i+ (2F̃n+3 − 1̃)j + (2F̃n+4 − 1̃)k

= 2Q̃n+1 − Ã.

2) From equation (4) and L̃en = F̃n + L̃n − 1̃ (see [45]), we obtain

Q̃Len = (F̃n + F̃n+1i+ F̃n+2j + F̃n+3k) + (L̃n + L̃n+1i+ L̃n+2j + L̃n+3k)

−Ã

= Q̃n + K̃n − Ã.

3) By equation (4) and L̃en =
2(L̃n+L̃n+2)

5 − 1̃ (see Theorem 2.2), we can
see that

Q̃Len =
2(L̃n+L̃n+1i+L̃n+2j+L̃n+3k)+2(L̃n+2+L̃n+3i+L̃n+4j+L̃n+5k)

5

−1̃ (1 + i+ j + k)

=
2(K̃n+K̃n+2)

5 − Ã.

The other parts can be easily proved by using same methods.

Theorem 3.7. For a positive integer n, the following summation formulas
related to the DGC Leonardo dual quaternionic sequence hold:

1)

n∑
j=0

Q̃Lej = Q̃Len+2 − Q̃Nn+2 − (J + 2ε + 5Jε)(1 + i + j + k) − L̃e0i −

(L̃e2 − 1̃)j − (2L̃e2 − 1̃)k,

2)

n∑
j=0

Q̃Le2j = Q̃Le2n+1 − Q̃Nn − ((J + Jε) + (1 + ε+ 2Jε) i

+(J + 2ε+ 5Jε) j + (1 + 2J + 5ε+ 10Jε) k),

3)

n∑
j=0

Q̃Le2j+1 = Q̃Le2n+2 − Q̃Nn+2 + ((J − Jε) + (1− ε− 4Jε) i

− (J + 4ε+ 9Jε) j − (1 + 4J + 9ε+ 18Jε) k),

where Q̃Nn = Ñn + Ñn+1i + Ñn+2j + Ñn+3k with Ñn = n + (n + 1)J + (n +
2)ε+ (n+ 3)Jε.
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Proof. 1) According to equation (4), we have:

n∑
j=0

Q̃Lej = Q̃Le0 + Q̃Le1 + Q̃Le2 + · · ·+ Q̃Len

=

n∑
j=0

L̃ej +

n+1∑
j=0

L̃ej − L̃e0

 i+

n+2∑
j=0

L̃ej − L̃e0 − L̃e1

 j

+

n+3∑
j=0

L̃ej − L̃e0 − L̃e1 − L̃e2

 k.

Then, from Theorem 2.3 we get:

n∑
j=0

Q̃Lej =
(
L̃en+2 + L̃en+3i+ L̃en+4j + L̃en+5k

)
−
(
Ñn+2 + Ñn+3i+ Ñn+4j + Ñn+5k

)
−(J + 2ε+ 5Jε)(1 + i+ j + k)− L̃e0i− (L̃e0 + L̃e1)j
−(L̃e0 + L̃e1 + L̃e2)k

= Q̃Len+2 − Q̃Ñn+2 − (J + 2ε+ 5Jε)(1 + i+ j + k)− L̃e0i
−(L̃e2 − 1̃)j − (2L̃e2 − 1̃)k.

2) By equation (4) and Theorem 2.3, we get that

n∑
j=0

Q̃Le2j = Q̃Le0 + Q̃Le2 + Q̃Le4 + · · ·+ Q̃Le2n

=

n∑
j=0

L̃e2j +
n∑

j=0

L̃e2j+1i+

n+1∑
j=0

L̃e2j − L̃e0

 j

+

n+1∑
j=0

L̃e2j+1 − L̃e1

 k

=
(
L̃e2n+1 − Ñn − (J + Jε)

)
+
(
L̃e2n+2 − Ñn+2 + (J − Jε)

)
i

+
(
L̃e2n+3 − Ñn+1 − (J + Jε)− L̃e0

)
j

+
(
L̃e2n+4 − Ñn+3 + (J − Jε)− L̃e1

)
k

= Q̃Le2n+1 − Q̃Ñn − ((J + Jε) + (1 + ε+ 2Jε) i
+(J + 2ε+ 5Jε) j +(1 + 2J + 5ε+ 10Jε) k) .

A similar proof can be given for the other part.

Theorem 3.8. For positive integers n and m, with n ⩾ m, the following
identities hold:

1) Q̃Len+m + (−1)mQ̃Len−m = LmQ̃Len + Ã(Lm − (−1)m − 1),

2) Q̃Len+m − (−1)mQ̃Len−m = 2FmK̃n+1 + Ã((−1)m − 1),
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where Fn is the n-th Fibonacci number, Ln is the n-th Lucas number, and K̃n

is the n-th DGC Lucas dual quaternion.

Proof. 1) By using αβ = −1 , the Binet’s formula of the DGC Leonardo
dual quaternionic sequence in equation (7), and the Binet’s formula of
the Lucas sequence Lm = αm + βm (see [27]), we get

Q̃Len+m + (−1)mQ̃Len−m =

(
2α̃∗αn+m+1 − 2β̃∗βn+m+1

α− β
− Ã

)

+(αβ)m

(
2α̃∗αn−m+1 − 2β̃∗βn−m+1

α− β
− Ã

)
=

2α̃∗αn+1 (αm + βm)− 2β̃∗βn+1 (αm + βm)

α− β
−Ã ((αβ)m + 1) .

= (αm + βm)

(
2α̃∗αn+1 − 2β̃∗βn+1

α− β

)
−Ã((−1)m + 1)

= Lm(Q̃Len + Ã)− Ã ((−1)m + 1)

= LmQ̃Len + Ã (Lm − (−1)m − 1) .

2) Similarly, applying αβ = −1 , the Binet’s formula of the DGC Leonardo
dual quaternionic sequence in equation (7), the Binet’s formula of the

Fibonacci sequence Fm = αm−βm

α−β (see [27]), and the Binet’s formula of

the DGC Lucas dual quaternionic sequence K̃n = α̃∗αn+ β̃∗βn (see [16]),
we obtain

Q̃Len+m − (−1)mQ̃Len−m =

(
2α̃∗αn+m+1 − 2β̃∗βn+m+1

α− β
− Ã

)

−(αβ)m

(
2α̃∗αn−m+1 − 2β̃∗βn−m+1

α− β
− Ã

)
=

2α̃∗αn+1 (αm − βm) + 2β̃∗βn+1 (αm − βm)

α− β
+Ã ((αβ)m − 1)

=

(
αm − βm

α− β

)(
2α̃∗αn+1 + 2β̃∗βn+1

)
+Ã ((−1)m − 1)

= 2FmK̃n+1 + Ã ((−1)m − 1) .
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Theorem 3.9. For positive integers k,m, s and t, with k ≥ m, s ≥ t and
k +m = s+ t, we have

Q̃LekQ̃Lem − Q̃LesQ̃Let =
4

5
α̃∗β̃∗ ((−1)mLk−m − (−1)tLs−t)

−Ã(Q̃Lek + Q̃Lem − Q̃Les − Q̃Let),

where Ln is the n-th Lucas number.

Proof. Writing αβ = −1, the Binet’s formula of the DGC Leonardo dual
quaternionic sequence in equation (7), and the Binet’s formula of the Lucas
sequence Lm = αm + βm (see [27]) gives

Q̃LekQ̃Lem − Q̃LesQ̃Let =
4α̃∗β̃∗(−αk+1βm+1−βk+1αm+1+αs+1βt+1+βs+1αt+1)

(α−β)2

−Ã ((Q̃Lek + Ã) + (Q̃Lem + Ã)− (Q̃Les + Ã)

−(Q̃Let + Ã))

=
4

5
α̃∗β̃∗ (αkβm + αmβk − αsβt − αtβs

)
−Ã(Q̃Lek + Q̃Lem − Q̃Les − Q̃Let)

=
4

5
α̃∗β̃∗(αβ)m

(
αk−m + βk−m

)
−(αβ)t (αs−t + βs−t)

−Ã(Q̃Lek + Q̃Lem − Q̃Les − Q̃Let)

=
4

5
α̃∗β̃∗ ((−1)mLk−m − (−1)tLs−t)

−Ã(Q̃Lek + Q̃Lem − Q̃Les − Q̃Let).

Theorem 3.10. For positive integers n and r, with n ≥ r, the general
Catalan’s identity can be obtained as follows:

Q̃Le2n − Q̃Len−rQ̃Len+r = 4α̃∗β̃∗(−1)n−r+1F 2
r + Ã(Q̃Len−r+Q̃Len+r − 2Q̃Len),

where Fn is the n-th Fibonacci number.

Proof. Substituting the Binet’s formula of the DGC Leonardo dual quater-
nionic sequence in equation (7) into Q̃Le2n − Q̃Len−rQ̃Len+r gives

Q̃Le2n − Q̃Len−rQ̃Len+r =
4α̃∗β̃∗(αn−r+1βn+r+1+αn+r+1βn−r+1−2αn+1βn+1)

(α−β)2

+Ã(Q̃Len−r + Ã+ Q̃Len+r + Ã− 2(Q̃Len + Ã))

=
4α̃∗β̃∗ (αβ)

n−r+1 (
α2r + β2r − 2αrβr

)
(α− β)2

+Ã(Q̃Len−r + Q̃Len+r − 2Q̃Len).

Considering αβ = −1 and the Binet’s formula of the Fibonacci sequence yields

Q̃Le2n− Q̃Len−rQ̃Len+r = 4α̃∗β̃∗(−1)n−r+1F 2
r + Ã(Q̃Len−r+ Q̃Len+r−2Q̃Len).
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Instead of this approach, by taking k → n, m → n, s → n + r, t → n − r
in Theorem 3.9, and using the Binet’s formulas of the Fibonacci and Lucas
sequences (see [27]), the general Catalan’s identity can be proved.

Theorem 3.11. For a positive integer n, the general Cassini’s identity
(sometimes called Simson’s identity) can be given as follows:

Q̃Le2n − Q̃Len−1Q̃Len+1 = 4α̃∗β̃∗(−1)n + Ã(Q̃Len−1 + Q̃Len+1 − 2Q̃Len).

Proof. Writing r → 1 in Theorem 3.10, we obtain the general Cassini’s
identity.

Theorem 3.12. For positive integers n and m, with m ≥ n the general
d’Ocagne’s identity can be expressed as follows:

Q̃LemQ̃Len+1 − Q̃Lem+1Q̃Len = 4α̃∗β̃∗(−1)n+1Fm−n + Ã(Q̃Lem−1 − Q̃Len−1),

where Fn is the n-th Fibonacci number.

Proof. We first write the Binet’s formula of the DGC Leonardo dual quater-
nionic sequence in equation (7), then rearrange the left-hand side, and see that

Q̃LemQ̃Len+1 − Q̃Lem+1Q̃Len = 4α̃∗β̃∗α
n+1βn+1(αm−n − βm−n)

α− β
+Ã ((Q̃Lem+1 − Q̃Lem)

−(Q̃Len+1 − Q̃Len)).

By using αβ = −1 and the Binet’s formula of the Fibonacci sequence, we have

Q̃LemQ̃Len+1 − Q̃Lem+1Q̃Len = 4α̃∗β̃∗(−1)n+1Fm−n

+Ã(Q̃Lem−1 − Q̃Len−1).

Instead of this method, Theorem 3.9 can be used. By taking k → m, m → n+1,
s → m+ 1 , t → n, and considering the Binet’s formulas of the Fibonacci and
Lucas sequences (see [27]), the general d’Ocagne’s identity can be proved.

Theorem 3.13. For positive integers n and m, with n ≥ m, the following
identity holds:

Q̃nQ̃Lem − Q̃mQ̃Len = 2α̃∗β̃∗(−1)mFn−m − Ã(Q̃n − Q̃m),

where Fn is the n-th Fibonacci number and Q̃n is the n-th DGC Fibonacci dual
quaternion.

Proof. Applying the Binet’s formula of the DGC Leonardo dual quater-
nionic sequence in equation (7), the Binet’s formula of the Fibonacci sequence,
and the Binet’s formula of the DGC Fibonacci dual quaternionic sequence
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Q̃n =
α̃∗αn − β̃∗βn

α− β
(see [16]), we can see that

Q̃nQ̃Lem − Q̃mQ̃Len = 2α̃∗β̃∗

(
αnβm(α− β)− αmβn(α− β)

(α− β)2

)
−Ã(Q̃n − Q̃m)

= 2α̃∗β̃∗(αβ)m

(
αn−m − βn−m

α− β

)
− Ã(Q̃n − Q̃m)

= 2α̃∗β̃∗(−1)mFn−m − Ã(Q̃n − Q̃m).

Theorem 3.14. For positive integers n and m, with n ≥ m, the following
identity holds:

Q̃nQ̃Lem + Q̃mQ̃Len =
4

5
[(2Kn+m+1 − Ln+m+1) + p (2Kn+m+3 − Ln+m+3)

+ (4Kn+m+2 − 2Ln+m+2) J
+((4Kn+m+3 − 2Ln+m+3)
+ p (4Kn+m+5 − 2Ln+m+5)) ε
+(8Kn+m+4 − 4Ln+m+4) Jε]

−
2α̃∗β̃∗

5
(−1)mLn−m − Ã(Q̃n + Q̃m),

where Ln is the n-th Lucas number, Kn is the n-th dual Lucas quaternion and
Q̃n is the n-th DGC Fibonacci dual quaternion.

Proof. We give only the main steps of the proof. Firstly, we write the Binet’s
formula of the DGC Leonardo dual quaternionic sequence in equation (7), and
then arrange it. Hence

Q̃nQ̃Lem + Q̃mQ̃Len =
4

5
((α̃∗)2αn+m+1 + (β̃∗)2βn+m+1)

−
2α̃∗β̃∗

5
(αmβm (αn−m + βn−m))

−Ã(Q̃n + Q̃m).

We need to calculate (α̃∗)2 and (β̃∗)2. The proof is completed by using
αβ = −1, α + β = 1, and the definition of dual Lucas quaternion (see [53]
for more details on dual Lucas quaternions).

Theorem 3.15. For a positive integer n, we have

Q̃Le2n+1 − Q̃Le2n = 4Q̃n(Q̃n+3 − Ã),

where Q̃n is the n-th DGC Fibonacci dual quaternion.

Kn is of the form Kn = Ln + Ln+1i + Ln+2j + Ln+3k, where {i, j, k} are the dual

quaternionic units and Ln is the n-th Lucas number (see [53]).
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Proof. Applying Theorem 3.6, item 1, and the recurrence relation of the
DGC Fibonacci dual quaternion sequence (see [16]), we can write

Q̃Le2n+1 − Q̃Le2n = (2Q̃n+2 − Ã)2 − (2Q̃n+1 − Ã)2

= 4((Q̃n+2 − Q̃n+1)(Q̃n+2 + Q̃n+1)− ÃQ̃n)

= 4(Q̃nQ̃n+3 − ÃQ̃n)

= 4Q̃n(Q̃n+3 − Ã).

Theorem 3.16. For positive integers n and m, with m ≥ n, the following
identity holds:

Q̃Le2m+n − Q̃Le2m−n = 4F2nQ̃m+1K̃m+1 − 2Ã(Q̃Lem+n − Q̃Lem−n),

where Fn is the n-th Fibonacci number, Q̃n is the n-th DGC Fibonacci dual
quaternion, and K̃n is the n-th DGC Lucas dual quaternion.

Proof. According to Theorem 3.6, item 1, we have

Q̃Le2m+n − Q̃Le2m−n = (2Q̃m+n+1 − Ã)2 − (2Q̃m−n+1 − Ã)2

= 4(Q̃m+1+n − Q̃m+1−n)(Q̃m+1+n + Q̃m+1−n)

−2Ã(2Q̃m+1+n − Ã− (2Q̃m+1−n − Ã)).

Now, the proof will be divided into two parts. We prove this theorem by
considering the case where n is even. From Theorem 2.1, items 2 and 3 in [16],

we conclude that Q̃m+1+n + Q̃m+1−n = LnQ̃m+1 and Q̃m+1+n − Q̃m+1−n =

FnK̃m+1. A similar proof works for the case where n is odd. Hence, we complete
the proof.

Theorem 3.17. For a positive integer n, the following identity is satisfied:

Q̃Len+1Q̃n+1 − Q̃LenQ̃n = 2Q̃n+1Q̃n + Q̃LenQ̃n−1,

where Q̃n is the n-th DGC Fibonacci dual quaternion.

Proof. On account of Theorem 3.6, item 1, and the recurrence relation of
the DGC Fibonacci dual quaternion sequence (see [16]), we get the following
result:

Q̃Len+1Q̃n+1 − Q̃LenQ̃n = (2Q̃n+2 − Ã)Q̃n+1 − (2Q̃n+1 − Ã)Q̃n

= 2Q̃n+1(Q̃n+2 − Q̃n)− Ã(Q̃n+1 − Q̃n)

= 2Q̃n+1(Q̃n + Q̃n−1)− ÃQ̃n−1

= 2Q̃n+1Q̃n + (2Q̃n+1 − Ã)Q̃n−1

= 2Q̃n+1Q̃n + Q̃LenQ̃n−1.



Investigating the dual quaternion extension of the DGC Leonardo sequence 691

Theorem 3.18. For positive integers n,m, r and s, with r ⩾ s, the special
case of Tagiuri’s identity is as below:

Q̃Len+rQ̃Len+s − Q̃LenQ̃Len+r+s =
4

5
α̃∗β̃∗(−1)n+1 (Lr+s − (−1)sLr−s)

+Ã(Q̃Len + Q̃Len+r+s

−Q̃Len+r − Q̃Len+s),

where Ln is the n-th Lucas number.

Proof. We begin by writing the Binet’s formula of the DGC Leonardo dual
quaternionic sequence in equation (7) into left-hand side and rearrange then
we see that:

Q̃Len+rQ̃Len+s − Q̃LenQ̃Len+r+s =
4
5 α̃

∗β̃∗(αβ)n+1 (αr+s + βr+s

− (αβ)s(αr−s + βr−s))

+Ã(Q̃Len + Q̃Len+r+s

−Q̃Len+r − Q̃Len+s).

From αβ = −1 and the Binet’s formula of the Lucas sequence we complete the
proof.

Instead of this approach, we can prove this identity using Theorem 3.9. By
substituting k → n + r, m → n + s, s → n + r + s, t → n, and considering
the Binet’s formulas of the Fibonacci and Lucas sequences (see [27]), we obtain
the special case of Tagiuri’s identity.

Theorem 3.19. For positive integers k,m and s, with m ≥ k and m ≥ s,
the following identity holds:

Q̃Lem+kQ̃Lem−k − Q̃Lem+sQ̃Lem−s = 4α̃∗β̃∗((−1)m−kF 2
k − (−1)m−sF 2

s )

+Ã(Q̃Lem+s + Q̃Lem−s

−Q̃Lem+k − Q̃Lem−k).

where Fn is the n-th Fibonacci number.

Proof. We first write the Binet’s formula of the DGC Leonardo dual quater-
nionic sequence in equation (7), and then rearrange it as follows:

Q̃Lem+kQ̃Lem−k − Q̃Lem+sQ̃Lem−s =
4

5
α̃∗β̃∗ (αm+s+1βm−s+1

+αm−s+1βm+s+1 − αm+k+1βm−k+1

−αm−k+1βm+k+1
)

+Ã(Q̃Lem+s + Q̃Lem−s

−Q̃Lem+k − Q̃Lem−k)

=
4

5
α̃∗β̃∗ (−(αβ)m−k+1(α2k + β2k)

+(αβ)m−s+1(α2s + β2s)
)

+Ã(Q̃Lem+s + Q̃Lem−s

−Q̃Lem+k − Q̃Lem−k).
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From the Binet’s formula of the Lucas sequence and L2k = 5F 2
k + 2(−1)k (see

in [27]), we obtain

Q̃Lem+kQ̃Lem−k − Q̃Lem+sQ̃Lem−s =
4

5
α̃∗β̃∗ ((−1)m−kL2k − (−1)m−sL2s

)
+Ã(Q̃Lem+s + Q̃Lem−s

−Q̃Lem+k − Q̃Lem−k)

= 4α̃∗β̃∗((−1)m−kF 2
k − (−1)m−sF 2

s )

+Ã(Q̃Lem+s + Q̃Lem−s

−Q̃Lem+k − Q̃Lem−k).

Theorem 3.20. For positive integers n and m, the following identity is
satisfied:

Q̃Lem+1Q̃Len+1 − Q̃Lem−1Q̃Len−1 = 4 ((2Qn+m+2 − Fn+m+2)
+p (2Qn+m+4 − Fn+m+4)
+ (4Qn+m+3 − 2Fn+m+3) J
+((4Qn+m+4 − 2Fn+m+4)
+p (4Qn+m+6 − 2Fn+m+6)) ε
+ (8Qn+m+5 − 4Fn+m+5) Jε)

−Ã(Q̃Len + Q̃Lem)

−2Ã2,

where Fn is the n-th Fibonacci number and Qn is the n-th dual Fibonacci
quaternion.

Proof. We first apply the Binet’s formula of the DGC Leonardo dual quater-
nionic sequence in equation (7) to the left-hand side. We thus get

Q̃Lem+1Q̃Len+1 − Q̃Lem−1Q̃Len−1 =
4

5
((α̃∗)2αm+n+4 + (β̃∗)2βm+n+4

−(α̃∗)2αm+n − (β̃∗)2βm+n)−
4

5
α̃∗β̃∗(

αmβn
(
(αβ)2 − 1

)
+ αnβm

(
(αβ)2 − 1

))
+Ã(Q̃Lem−1 − Q̃Lem+1 + Q̃Len−1

−Q̃Len+1).

Here, we need to find (α̃∗)2 and (β̃∗)2 and substitute them into the above
equation. Considering αβ = −1 and referring to the definition of dual Lucas
quaternion (see [53] for more details related to dual Lucas quaternions), we

Qn is of the form Qn = Fn + Fn+1i + Fn+2j + Fn+3k, where {i, j, k} are the dual

quaternionic units and Fn is the n-th Fibonacci number (see [53]).
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conclude that

Q̃Lem+1Q̃Len+1 − Q̃Lem−1Q̃Len−1 =
4

5
(2(Kn+m+4 −Kn+m)

− (Ln+m+4 − Ln+m)
+p (2 (Kn+m+6 −Kn+m+2)
− (Ln+m+6 − Ln+m+2))
+ (4 (Kn+m+5 −Kn+m+1)
−2 (Ln+m+5 − Ln+m+1)) J
+(4 (Kn+m+6 −Kn+m+2)
−2 (Ln+m+6 − Ln+m+2)
+p (4 (Kn+m+8 −Kn+m+4)
−2 (Ln+m+8 − Ln+m+4))) ε
+(8 (Kn+m+7 −Kn+m+3)
−4 (Ln+m+7 − Ln+m+3)) Jε)

−Ã(Q̃Len + Q̃Lem)− 2Ã2.

According to the definitions of dual Fibonacci and dual Lucas quaternions (see
[53] for more details related to dual Lucas quaternions) and
Ln+r − Ln−r = 5FnFr for even integer r (see [27]), we have

Q̃Lem+1Q̃Len+1 − Q̃Lem−1Q̃Len−1 = 4 ((2Qn+m+2 − Fn+m+2)
+p (2Qn+m+4 − Fn+m+4)
+ (4Qn+m+3 − 2Fn+m+3) J
+((4Qn+m+4 − 2Fn+m+4)
+ p (4Qn+m+6 − 2Fn+m+6)) ε
+(8Qn+m+5 − 4Fn+m+5) Jε)

−Ã(Q̃Len + Q̃Lem)− 2Ã2.

4. Conclusions

In this paper, we investigate and discuss the dual quaternionic sequence
with the DGC Leonardo number components for p ∈ R in detail. Within the
framework of DGC number structures, we have

• the dual quaternionic sequence with dual-complex Leonardo for p = −1,
• the dual quaternionic sequence with hyper-dual Leonardo for p = 0,
• the dual quaternionic sequence with dual-hyperbolic Leonardo for p = 1.

Additionally, we present some characteristic properties of this sequence, includ-
ing its Binet’s formula, generating function, d’Ocagne’s, Catalan’s, Cassini’s,
and Tagiuri’s identities.
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de Matemática Fonte. 21 (2021), 130–139.

[34] M. C. dos S. Mangueira, F. R. V Alves, and P. M. M. C. Catarino, Hybrid quaternions

of Leonardo, Trends Comput. Appl. Math. 23 (2022), no. 1, 51–62.
[35] F. Messelmi, Dual-complex numbers and their holomorphic functions, hal-01114178,

2015.
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Department of Mathematics,
Yildiz Technical University,
34220, Istanbul, Türkiye.
E-mail: yeliz.sacli@yildiz.edu.tr


