DOI QR코드

DOI QR Code

SEVERAL NEWTON-COTES TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES BELONG TO Lp SPACES WITH p ∈ [1, ∞]

  • Badreddine Meftah (Laboratory of Analysis and Control of Differential Equations "ACED", Facuty MISM, Department of Mathematics, 8 May 1945 University) ;
  • Chaima Menai (Department of Mathematics, 8 May 1945 University)
  • Received : 2024.05.25
  • Accepted : 2024.09.09
  • Published : 2024.12.20

Abstract

In this study, we introduce a new bi-parameterized integral identity involving at most five points. Using this identity, we establish various integral inequalities for functions whose first derivatives belong to the spaces Lp with 1 ≤ p ≤ ∞. Several known results are recaptured. Applications are provided.

Keywords

References

  1. M. W. Alomari, A companion of Dragomir's generalization of the Ostrowski inequality and applications to numerical integration. Ukr. Math. J. 64 (2012), no. 4, 491-510.
  2. M. W. Alomari, A generalization of companion inequality of Ostrowski's type for mappings whose first derivatives are bounded and applications and in numerical integration, Trans. J. Math. Mech. 4 (2012), no. 2, 103-109.
  3. M. W. Alomari and S. S. Dragomir, Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration. Jordan J. Math. Stat. 7 (2014), no. 2, 89-108.
  4. N. Boutelhig, B. Meftah, W. Saleh, and A. Lakhdari, Parameterized Simpson-like inequalities for differentiable Bounded and Lipschitzian functions with application example from management science. J. Appl. Math. Stat. Inform. 19 (2023), no. 1, 79-91.
  5. P. Cerone, S. S. Dragomir, and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications. Demonstratio Math. 32 (1999), no. 4, 697-712.
  6. P. Cerone, S. S. Dragomir, J. Roumeliotis, and J. Sunde, A new generalization of the trapezoid formula for n-time differentiable mappings and applications. Demonstratio Math. 33 (2000), no. 4, 719-736.
  7. P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, 65-134, G.A. Anastassiou (Ed), Chapman & Hall/CRC Press, New York, 2000.
  8. S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L1 norm and applications to some special means and to some numerical quadrature rules. Tamkang J. Math. 28 (1997), no. 3, 239-244.
  9. S. S. Dragomir, On Simpson's quadrature formula for differentiable mappings whose derivatives belong to Lp spaces and applications, J. KSIAM 22 (1998), 57-65.
  10. S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 30 (1999), no. 1, 53-58.
  11. S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson's inequality and applications. J. Inequal. Appl. 5 (2000), no. 6, 533-579.
  12. S. S. Dragomir, P. Cerone, and J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. Appl. Math. Lett. 13 (2000), no. 1, 19-25.
  13. S. S. Dragomir, On the midpoint quadrature formula for Lipschitzian mappings and applications. Kragujevac J. Math. 22 (2000), 5-11.
  14. S. S. Dragomir, Y.-J. Cho, and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489-501.
  15. S. S. Dragomir, Some companions of Ostrowski's inequality for absolutely continuous functions and applications, Facta Univ. Ser. Math. Inform. 19 (2004), 1-16.
  16. S. S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 5 (2014), no. 1, 89-97.
  17. S. S. Dragomir, Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation. Acta Univ. Sapientiae Math. 12 (2020), no. 1, 30-53.
  18. S. Erden, S. Iftikhar, P. Kumam, and P. Thounthong, On error estimations of Simpson's second type quadrature formula, Math. Methods Appl. Sci. (2020), 1-13.
  19. A. Kashuri, B. Meftah, and P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications: Some weighted Simpson type inequalities. J. Fract. Calc. Nonlinear Syst. 1 (2020), no. 1, 75-94.
  20. B. Meftah, M. Merad, N. Ouanas, and A. Souahi, Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex. Acta Comment. Univ. Tartu. Math. 23 (2019), no. 2, 163-178.
  21. B. Meftah, A. Lakhdari, and D. C. Benchettah, Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions, Comput. Math. Model. 33 (2022), no. 3, 330-353.
  22. M. Z. Sarikaya, On the generalized Ostrowski type inequalities for co-ordinated convex functions. Filomat 37 (2023), no. 22, 7351-7366.
  23. W. Saleh, B. Meftah, and A. Lakhdari, Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 14 (2023), no. 4, 63-76.
  24. W. Saleh, A. Lakhdari, T. Abdeljawad, and B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl. 2023, Paper No. 122, 18 pp.
  25. W. S. Zhu, B. Meftah, H. Xu, F. Jarad, and A. Lakhdari, On parameterized inequalities for fractional multiplicative integrals, Demonstr. Math. 57 (2024), no. 1, Paper No. 20230155, 17 pp.