Acknowledgement
This research was in part supported by grants from Ondokuz Mayis University (Project No: PYO.EGF.1901.19.002).
References
- J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules Supplements and Projectivity in Module Theory, Front. Appl. Math., Birkhauser, Basel, 2006.
- H. Calisici and A. Pancar, ⊕-Cofinitely supplemented modules, Czech Math J 54 (2004) no. 129, 1083-1088.
- A. Harmanci , D. Keskin, and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hung. 83 (1999) no. 1-2, 161-169.
- D. Keskin, P. F. Smith, and W. Xue, Rings whose modules are ⊕-supplemented, J. Algebra 218 (1999), 470-487.
- B. Kosar, C. Nebiyev, and N. Sokmez, g-Supplemented modules, Ukr. Math. J. 67 (2015), no.6, 861-864.
- B. Kosar, C. Nebiyev, and A. Pekin, A generalization of g-supplemented modules, Miskolc Math Notes 20 (2019), no. 1, 345-352.
- A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, Int. J. Math. Sci. 69 (2003), 4373-4387.
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990.
- C. Nebiyev and H. H. Okten, Some Properties of ⊕ - e-Supplemented Modules, Presented in 11th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2022), 2022.
- C. Nebiyev, H. H. Okten, and A. Pekin, Essential supplemented modules, Int. J. Pure Appl. Math. 120 (2018), no. 2, 253-257.
- C. Nebiyev, H. H. Okten, and A. Pekin, Amply essential supplemented modules, Journal of Scientific Research & Reports 21 (2018), no. 4, 1-4.
- C. Nebiyev and A. Pancar, On supplement submodules, Ukr. Math. J. 65 (2013), no. 7, 1071-1078.
- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.