DOI QR코드

DOI QR Code

GEOMETRY OF SOME SUBMANIFOLDS IN A 3-DIMENSIONAL WALKER MANIFOLD

  • Franck Houenou (Department of Mathematics, Faculty of Sciences and Techniques, University of Abomey Calavi) ;
  • Ameth Ndiaye (Departement de Mathematiques, FASTEF, Universite Cheikh Anta Diop) ;
  • Moussa Koivogui (Ecole Superieure Africaine des Technologies de l'Information et de Communication)
  • Received : 2024.04.20
  • Accepted : 2024.09.17
  • Published : 2024.12.20

Abstract

In this work, we study the geometric properties of curves and surfaces in a Walker 3-dimensional manifold. We characterize and give a geometric description of normal and binormal surfaces passing through a giving curve. We deduce the geometries of such surfaces from those of the curve.

Keywords

Acknowledgement

The authors would like to thank the editor for the kind handling of the work. They also express their gratitude to the reviewers for their prompt and valuable contributions and comments helping improve the scientific quality of the paper.

References

  1. N. H. Abdel-All, R. A. Hussien, and T. Youssef, Evolution of curves via the velocities of the moving frame, J. Math. Comput. Sci. 2 (2012), no. 5, 1927-5307.
  2. J. Arroyo, O. J. Garay, and A. Pampano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, (English summary) Adv. Math. Phys.(2017), 8 pp.
  3. M. Brozos-Vazquez, E. Garcia-Rio, P. Gilkey, S. Nikevic and R. Vazquez-Lorenzo, The Geometry of Walker Manifolds. Synth. Lect. Math. Stat., 5 Morgan & Claypool Publishers, Williston, VT, 2009.
  4. M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. 190-191.
  5. B.Y. Chen, Geometry of submanifolds, Pure Appl. Math., No. 22 Marcel Dekker, Inc., New York, 1973.
  6. A. S. Diallo, A. Ndiaye, and A. Niang, Minimal graphs on three-dimensional Walker manifolds. Nonlinear analysis, geometry and applications, 425-438, Trends Math., Birkhauser/Springer, Cham, 2020.
  7. D. Dreibelbis, Singularities of the Gauss map and the binormal surface, Adv. Geom. 3 (2003), 453-468.
  8. W. Haken, Theorie der Normalflachen, Acta. Math. 105 (1995), 245-375.
  9. K . Ilarslan, Spacelike normal curves in Minkowski space, Turkish J. Math. 29 (2005), 53-63.
  10. K. Ilarslan and E. Nesovic, Timelike and null normal curves in Minkowski space E31, Indian J. Pure Appl. Math. 35 (2004), 881-888.
  11. H. Kneser, Geschlossene Flachen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Dtsch. Math.-Ver. 38 (1929), 248-259.
  12. S. G. Mohamed, Binormal motions of inextensible curves in de-Sitter space, J. Egypt. Math. Soc. 25 (2017), no. 3, 313-318.
  13. A. Niang, A. Ndiaye, and A. S. Diallo, A Classification of Strict Walker 3-manifold, Konuralp J. Math. 9 (2021), no. 1, 148-153.
  14. A. Niang, A. Ndiaye, and A. S. Diallo, Minimals translation surfaces in a strict Walker 3-manifold, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73 (2024), no. 2, 554-568.
  15. W. K. Schief and C. Rogers, Binormal Motion of Curves of Constant Curvature and Torsion. Generation of Soliton Surfaces, Proc. Math. Phys. Eng. Sci. 455 (1999), no. 1988, 3163-3188.
  16. M. Stocking, Almost normal surfaces in 3-dimensional manifolds, Trans. Amer. Math. Soc. 352 (2000), 171-207.
  17. M. Tamura, Surfaces which contain helical geodesics, Geom. Dedicata 42 (1992), 311-315.