과제정보
I would like to thank the referees for helpful suggestions.
참고문헌
- A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Q. J. Math. Oxford Series (2) 20 (1969), no. 1, 129-137.
- W. D. Banks and F. Luca, Concatenations with binary recurrent sequences, J. Integer Seq. 8 (2005). (Article 05.1.3).
- D. Bitim and R. Keskin, On solutions of the Diophantine equation Fn - Fm = 3a, Proceedings- Mathematical Sciences 129 (2019), no. 81.
- J. J. Bravo and F. Luca, On the Diophantine equation Fn + Fm = 2a, Quaest. Math. 39 (2016), no. 3, 391-400.
- J. J. Bravo, C.A. Gomez, and F. Luca, Powers of two as sums of two k-Fibonacci numbers, Miskolc Math Notes 17 (2016), no. 1, 85-100.
- Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. 163 (2006), no. 3, 969-1018.
- Y. Bugeaud, F. Luca, M. Mignotte, and S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63 (2008), 65-75.
- Y. Bugeaud, Linear forms in logarithms and applications, IRMA Lectures in Mathematics and Theoretical Physics, 28, Zurich: European Mathematical Society, 2018.
- A. Dujella and A. Petho, A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxford Series 49 (1998), no. 3, 291-306.
- F. Erduvan and R. Keskin, Non-negative integer solutions of the Diophantine equation Fn - Fm = 5a, Turk. J. Math. 43 (2019), 115-123.
- D. G. M. Farrokhi, Some remarks on the equation Fn = kFm in Fibonacci numbers, J. Integer Seq. 10 (2007), no. 2, (Article 07.5.7)
- M. Guney Duman, U. Ogut, and R. Keskin, Generalized Lucas numbers of the form wx2 and wVmx2, Hokkaido Math. J. 47 (2018), no. 3, 465-480.
- O. Karaatli and R. Keskin, On the Lucas sequence equations Vn = 7x2 and Vn = 7Vmx2, Bull. Malays. Math. Sci. Soc. 41 (2018), 335-353.
- R. Keskin and B. Demirturk, Fibonacci and Lucas congruence a their applications, Acta Mathematica Sinica (English Ser.) 27 (2011), 725-736.
- R. Keskin and Z. Siar, On the Lucas sequence equations Vn = kVm and Un = kUm, Colloq. Math. 130 (2013), 27-38.
- A. M. Legendre, Essai sur la theorie des nombres, Duprat, Paris, 1798.
- F. Luca and V. Patel, On perfect powers that are sums of two Fibonacci numbers, J. Number Theory 189 (2018), 90-96.
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izvestiya Akademii Nauk Series Mathematics 64 (2000), no. 6, 125-180 (in Russian).
- S.C. Patel, S.G. Rayaguru, P. Tiebekabe, G.K. Panda, and K.R. Kakanou, On solutions of the Diophantine equation Ln ± Lm = pa, Malaya Journal of Matematik 11 (2023), no. 3, 294-302.
- P. Ribenboim and W.L. McDaniel, Squares in Lucas sequences having an even first parameter, Colloq. Math. 78 (1998), 29-34.
- P. Ribenboim and W.L. McDaniel, On Lucas sequence terms of the form kx2, Number theory: Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri (Turku, 1999), 293-303, Walter de Gruyter, Berlin, 2001.
- S. E. Rihane and A. Togbe, On the intersection of Padovan, Perrin sequences and Pell, Pell-Lucas sequences, Ann. math. inform. 54 (2021), 57-71.
- Z. Siar and R. Keskin, On the Diophantine equation Fn - Fm = 2a, Colloq. Math. 159 (2020), 119-126.
- P. Tiebekabe and I. Diouf, On solutions of the Diophantine equation Ln + Lm = 3a, Malaya Journal of Matematik 9 (2021), no. 4, 228-238.
- P. Tiebekabe and I. Diouf, Power of three as difference of two Fibonacci numbers, JP J Algebr. Number Theory 49 (2021), no. 2, 185-196.
- B. M. M. De Weger, Algorithms for Diophantine equations, CWI Tracts 65, Stichting Mathematisch Centrum, Amsterdam, 1989.