과제정보
The author would like to thank the unknown reviewers for useful suggestions that improved the first version of the paper.
참고문헌
- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesnik 66, (2014), 223-234.
- T. Abdeljawad, K. Ullah, J. Ahmad, and Z. Ma, On the convergence of an iterative process for enriched Suzuki nonexpansive mappings in Banach spaces, AIMS Math., 7 (2022), 20247-20258.
- R. P. Agarwal, D. O'Regon, and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series, Topological Fixed Point Theory and Its Applications, Springer: New York, NY, USA, 2009.
- R. P. Agarwal, D. O'Regon, and D. R. Sahu, Iterative construction of fixed points of nearly asymtotically non-expansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3, (1922), 133-181.
- M. Basarir and A. Sahin, On the strong and ∆-convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai J. Math. 12 (2014), no. 3, 549-559.
- V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math. 35 (2019), 293-304.
- F. E. Browder, onexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54, (1965), 1041-1044.
- C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Prob. 20 (2004), 103-120.
- Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor. 8 (1994), 221-239.
- J. A. Clarkson, Uniformly convex spaces, Trans. Am. Math. Soc. 40 (1936), 396-414.
- D. Gohde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.
- S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1976), 147-150.
- M. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506-510.
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.
- Z. Opial, Weak and strong convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73 (1967), 591-597.
- E. M. Picard, Memorie sur la theorie des equations aux derivees partielles et la method des approximation ssuccessives, J. Math. Pure Appl. 6 (1980), 145-210.
- A. Sahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math. 35 (2019), no. 2, 221-232.
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- H. F. Senter and W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Am. Math. Soc. 44 (1976), 375-380.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088-1095.
- W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers: Yokohoma, Japan, 2000.
- B. S. Thakur, D. Thakur, and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput. 275, (2016), 147-155.
- K. Ullah, J. Ahmad, M. Arshad, and Z. Ma, Approximation of fixed points for enriched Suzuki nonexpansive operators with an application in Hilbert spaces, Axioms 11 (2022), no. 1, 14.
- K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat 32 (2018), 187-196.
- K. Ullah, J. Ahmad, and M. de la Sen, Some new results on a three-step iteration process, Axioms 9 (2020), no. 3, 110.