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ON M-ITERATIVE SCHEME FOR MAPPINGS WITH

ENRICHED (C) CONDITION IN BANACH SPACES

Junaid Ahmad

Abstract. In this paper, we approximate fixed points of mappings sat-

isfying enriched (C) condition under a modified three-step M-iterative

scheme in a Banach space setting. First, we establish a weak conver-
gence theorem and then obtain several strong convergence theorems for

our iterative scheme under some mild conditions. A numerical example
of mappings satisfying enriched (C) condition is used that does not sat-

isfy the ordinary (C) condition to support our main outcome. Numerical

computations and graphs obtained from different iterative schemes show
that the studied scheme provides a better rate of convergence as com-

pared to some other schemes of the literature. As an application of our

main result, we provide a projection type iterative scheme for solving split
feasibility problems (SFP) on a Hilbert space setting.

1. Introduction

In 2008, Suzuki [21] suggested the concept of (C) condition on mappings: a
mapping S on a subset U of a Banach space is said to satisfy the (C) condition
if

1

2
||u− Su|| ≤ ||u− u′|| ⇒ ||Su− Su′|| ≤ ||u− u′|| for every u, u′ ∈ U .

Furthermore, S is called nonexpansive if ||Su−Su′|| ≤ ||u−u′||, for all u, u′ ∈ U .
The class of mappings endowed with (C) condition is the natural extension of
the class of nonexpansive mappings.

Suzuki [21] established the following facts for these mappings.

Proposition 1.1. Assume that U is any given subset of a Banach space Z
such that S : U → U .

(i) If S satisfies the (C) condition then for any u, u′ ∈ U , it follows that

||u− Su′|| ≤ 3||u− Su||+ ||u− u′||.
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(ii) If Z is with the Opial’s condition and S satisfies the (C) condition such
that for any sequence {uη} which converges weakly to a point a∗, then
Sa∗ = a∗ if the estimate limη→∞ ||uη − Suη|| = 0 holds.

If there is a point a∗ ∈ U such that Sa∗ = a∗, then a∗ is known as a
fixed point for S and throughout the research, we shall write FS := {a∗ ∈ U :
Sa∗ = a∗}. Browder [8] and Göhde [12] independently, however, differently
proved the existence of a fixed point for nonexpansive operators on a certain
subset of uniformly convex Banach space [11] (UCBS, for short). Fixed point
theory of nonexpansive mappings is very important and its applications can
be found in many areas of applied sciences. Thus it is always desirable to
suggest some extension of these mappings in order to extend their area of
applications. To this end, in the year 2019, Berinde [7] was the first who
presented a novel generalization of nonexpansive mappings and he named the
new class of mappings as a class of enriched nonexpansive mappings. The class
of enriched nonexpansive mappings and the classes of mappings satisfying (C)
condition are important classes of nonlinear mappings. Indeed, we may observe
that nonexpansive mappings are essentially enriched nonexpansive mappings
with b = 0 and also satisfies the (C) condition. Hence it is very natural to
consider a generalization of these mappings. To achieve the objective, recently,
Ullah et al. [24] introduced the class of mappings with enriched (C) condition
as follows.

Definition 1.2. [24]A selfmap S on a subset U is said to satisfy the enriched
(C) condition if and only if one can estimate a real constant b ∈ [0,∞) such
that

1

2
||u− Su|| ≤ (b+ 1)||u− u′|| ⇒ ||b(u− u′) + Su− Su′|| ≤ (b+ 1)||u− u′||,

for every u, u′ ∈ U .

Ullah et al. [24] proved that every mapping that satisfies the ordinary (C)
condition also satisfies the enriched (C) condition. They further showed that
there are some numerical examples of mappings with enriched (C) condition
that do not satisfy the (C) condition. Thus they concluded that the class of
mappings satisfying enriched (C) condition is more general than many other
classes of nonlinear mappings properly including the class of mappings with
condition (C). They also proved existence, weak convergence and strong con-
vergence results for these mappings in a Hilbert space setting. In this paper,
we generalize their results to the more general setting of Banach spaces.

Nonexpansive and enriched nonexpansive can be characterized using conti-
nuity. For example, we know that all nonexpansive and all enriched nonexpan-
sive mappings are continuous on their whole domains. However, the continuity
is not a characterization of mappings with enriched (C) condition in general.
For instance, the following example shows that a mapping satisfying enriched
(C) condition may not continuous on its whole domain.
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Example 1.3. [24, Example 4] Set S on [0, 3] as follows:

Su =

{
0 if u ∈ [0, 3),
1 if u ∈ {3}.

We see that S is neither nonexpansive nor enriched nonexpansive on U because
S is not continuous on the point 3 ∈ U . However, S satisfies the enriched (C)
condition.

We know that once an existence of a fixed point for a mapping is established
then to approximate the value of the fixed point is always requested. The sim-
plest iterative method was presented by Picard [17] for finding fixed points of
some nonlinear mappings. Soon, Banach [5] proved that the iterative scheme
of Picard [17] is suitable for finding fixed points of contraction mappings. After
this, many authors proved the convergence of Picard iterative method for dif-
ferent classes of mappings. Picard iterative scheme is simple but there are some
issues which we are facing when we implement it in the class of nonexpansive
mappings. For example, when Su = −u then S is nonexpansive and admits
a unique fixed point u = 0. However the Picard iterative scheme of S does
not converge to 0 if the initial approximation is different form 0. On the other
hand, the Picard iterative scheme normally converges very slow and requires
many step of iteration to reach to the requested fixed point. To cover these
issues, many author constructed general iterative schemes (see, e.g., Mann [14],
Ishikawa [13], Noor [15], Agarwal [4], Abbas iteration [1] and others).

For finding fixed points of mappings satisfying (C) condition, Ullah and
Arshad [25] presented a novel three-step scheme called M-iteration. Under
various assumptions they proved several convergence results and provided an
example of mappings with (C) condition to support these results. Further, they
used this example and proved numerically that M iteration is faster convergent
to a fixed point corresponding to the leading Thakur iterative method [23] and
leading two step Agarwal iterative method [4]. Also, Abdeljawad et. al. [2] used
a faster iterative scheme for approximating fixed points of enriched nonlinear
mappings. In this paper, the aim is to prove the convergence of M-iteration
for mappings satisfying enriched (C) condition. To achieve this objective, we
consider a mapping S on a subset U of a Banach space. Suppose Sλ denotes
an averaged mappings of S, that is, Sλu = (1− λ)u+ λSu, where λ = 1

b+1 . It
is well-known that the fixed point set of Sλ coincides with the fixed point set
of S. Using the mapping Sλ, the Agarwal [4], Thakur [23] and the M iterative
method due to Ullah and Arshad [25] can be described in the following ways,
respectively:

(1)

 u1 ∈ U ,
vη = (1− βη)uη + βηSλuη,
wη+1 = (1− αη)Sλuη + αηSλvη, η ∈ N,

where αη, βη ∈ (0, 1) and λ = 1
b+1 ,
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(2)


u1 ∈ U ,
wη = (1− βη)uη + βηSλuη,
vη = Sλ((1− αη)uη + αηwη),
uη+1 = Sλvη, η ∈ N,

where αη, βη ∈ (0, 1) and λ = 1
b+1 ,

(3)


u1 ∈ U ,
wη = (1− αη)uη + αηSλuη,
vη = Sλwη,
uη+1 = Sλvη, η ∈ N,

where αη ∈ (0, 1) and λ = 1
b+1 .

In this paper, first we employ the iterative scheme (3) to establish existence,
weak convergence and strong convergence results for mappings satisfying en-
riched (C) condition under various conditions. After this, we use an example
in which a mapping satisfies the enriched (C) condition that does not satisfy
the ordinary (C) condition. Using this example, we shall show by that our
iterative method converges better to a fixed point corresponding to some other
scheme. For more details on M-iterative scheme, we refer the reader to [6, 18].
Our main outcome generalizes the corresponding results of Ullah et al. [24]
from Hilbert spaces to Banach spaces and Ullah and Arshad [25] results from
mappings with condition (C) to mappings with enriched (C) condition.

2. Preliminaries

We now provide some known results and facts of the literature that are
needed in our main outcome.

Definition 2.1. [22, 3] Let U be a convex closed nonempty subset of a
UCBS Z and {uη} a bounded sequence contained in Z. In this case, we denote
the set r(U , {uη}) = inf{lim supη→∞ ||uη−u|| : u ∈ U} is called the asymptotic
radius and the A(U , uη}) = {u ∈ U : lim supη→∞ ||uη−u|| = r(U , uη)} is called
asymptotic center of the sequence {uη}. Moreover, the set A(U , uη}) contains
one and only one element.

Definition 2.2. [16] A Banach space Z is said to be with the Opial’s
condition if any sequence {uη} in Z which admits weak limit, namely, u ∈ Z
satisfies

lim sup
η→∞

||uη − u|| < lim sup
η→∞

||uη − u′|| ∀u′ ∈ Z − {u}.

Lemma 2.3. [24] Suppose U is closed and convex in Z and S : U → U .
If S satisfies the enriched (C) condition with b ∈ [0,∞), then Sλ satisfies the
Suzuki (C) condition, where λ = 1

b+1 .
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The following result was established by Schu [19], which is a very basic
property of a given UCBS.

Lemma 2.4. Consider a UCBS Z such that 0 < i ≤ αη ≤ j < 1. In this
case, if a real number z ≥ 0 exists such that for any sequences {uη} and {vη} in
Z satisfying lim supη→∞ ||uη|| ≤ z, lim supη→∞ ||vη|| ≤ z and limη→∞ ||αηuη +
(1−αη)vη|| = z. Then consequently the estimate limη→∞ ||uη−vη|| = 0 holds.

3. Main outcome

The purpose of this section is to consider the iterative scheme (3) in the
setting of mappings satisfying enriched (C) condition. Before to establish the
convergence results, we need a very basic lemma as follows.

Lemma 3.1. Suppose U is closed and convex in a UCBS Z and S : U → U .
If S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained from (3),
then limη→∞ ||uη − a∗|| exists for all a∗ ∈ FS .

Proof. Consider any point a∗ ∈ FS . It follows that a∗ ∈ FSλ
. Hence

using Lemma 2.3, we have Sλ satisfies the (C) condition, in particular, 1
2 ||a

∗ −
Sλa

∗|| ≤ ||a∗ − u|| implies ||Sλa
∗ − Sλu|| ≤ ||a∗ − u|| for all u ∈ U . Using this,

we get

||wη − a∗|| = ||(1− αη)uη + αηSλuη − a∗||
≤ (1− αη)||uη − a∗||+ αη||Sλuη − a∗||
≤ (1− αη)||uη − a∗||+ αη||uη − a∗||
= ||uη − a∗||,

and

||vη − a∗|| = ||Sλwη − a∗||
≤ ||wη − a∗|| ≤ ||uη − a∗||.

While using the above inequalities, we have

||uη+1 − a∗|| = ||Sλvη − a∗||
≤ ||vη − a∗|| ≤ ||uη − a∗||.

Thus, we obtained in the last that ||uη+1−a∗|| ≤ ||uη−a∗||. Thus, it follows
that the sequence of real’s {||uη − a∗||} is nonincreaing and also bounded.
Accordingly, we get limη→∞ ||uη − a∗|| exists, where a∗ ∈ FSλ

= FS is any
point.

The existence of a fixed point for the class of mappings satisfying enriched
(C) condition is the following. This result is also useful for the next main result
in the sequel.
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Theorem 3.2. Suppose U is closed and convex in a UCBS Z and S : U →
U . If S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained from
(3). Then FS ̸= ∅ ⇐⇒ {uλ} is bounded in U and limη→∞ ||Sλuη − uη|| = 0
where λ = 1

b+1 .

Proof. First we note from the Lemma 3.1 that for any point a∗ ∈ FS the
estimate limη→∞ ||uη − a∗|| eventually exists and {uη} is bounded in U . Thus
we put

(4) lim
η→∞

||uη − a∗|| = z.

But we have proved in the Lemma 3.1 that

||wη − a∗|| ≤ ||uη − a∗||.

It follows that

(5) ⇒ lim sup
η→∞

||wη − a∗|| ≤ lim sup
η→∞

||uη − a∗|| = z.

Now by Lemma 2.3, Sλ satisfies the (C) condition and 1
2 ||a

∗ − Sλa
∗|| ≤ ||uη −

a∗||, therefore, ||Sλuη − a∗|| ≤ ||uη − a∗||. Hence

(6) lim sup
η→∞

||Sλuη − a∗|| ≤ lim sup
η→∞

||uη − a∗|| = z.

Again, from the proof of Lemma 3.1,

||uη+1 − a∗|| ≤ ||wη − a∗||.

It follows that

(7) ⇒ z ≤ lim inf
η→∞

||wη − a∗||.

From (5) and (7), we get

(8) z = lim
η→∞

||wη − a∗||.

From (8), we have

z = lim
η→∞

||wη − a∗|| = lim
η→∞

||(1− αη)(uη − a∗) + αη(Sλuη − a∗)||.

Applying Lemma 2.4, we obtain

lim
η→∞

||Sλuλ − uλ|| = 0.

Conversely, we suppose that {uη} ⊆ U is bounded and limη→∞ ||uη−Sλuη|| = 0
and need to prove that FS ̸= ∅. For this purpose, it is sufficient to prove that
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for every choice of a∗ ∈ A(U , {uλ}), the element Sλa
∗ contained in the set

A(U , {uη}). Using Lemma 2.3, Sλ and Proposition 1.1(i), one has

r(Sλa
∗, {uη}) = lim sup

η→∞
||uη − Sλa

∗||

= lim sup
η→∞

(3||uη − Sλuη||+ ||uη − a∗||)

= lim sup
η→∞

||uη − a∗|| = r(a∗, {uη}).

We have seen that Sλa
∗ ∈ A(U , {uη}). But the set A(U , {uη}) is consist of a

one point. It follows that a∗ = Sλa
∗. But FSλ

= FS , hence we proved that the
set FS ̸= ∅.

The first main result related to the convergence of our method (3) is the
following weak convergence theorem.

Theorem 3.3. Suppose U is convex and closed in a UCBS Z and S : U →
U . If S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained from
(3). Then {uη} converges weakly to a fixed point of S provided that the Banach
space Z satisfies the Opial’s condition.

Proof. Since Z is a UCBS and hence it follows that Z is reflexive and {uη}
is bounded in U due to Theorem 3.2. It follows that one can find a weakly
convergence subsequence which we denote here by {uηi

} of {uη}. If u1 denotes
a weak limit of {uηi} then we want to prove that u1 is the weak limit of {uη}
and a fixed point of S. For this, in the view of Theorem 3.2, it follows that
limη→∞ ||Sλuηi

− uηi
|| = 0. By Proposition 1.1(ii), we have u1 ∈ FSλ

, that
is, u1 is a fixed point of Sλ and hence a fixed point of S. Now it is remain to
prove that u1 is the weak limit of {uη}. For this, we suppose that u1 is not a
weak limit of {uη} and so there exists another subsequence {uηt} of {uη} which
admits a weak limit u2 such that u2 ̸= u1. A similar calculation to above, we
get u2 is also a fixed point of S. Hence using the Opial’s condition of Z, we
have

lim
η→∞

||uη − u1|| = lim
i→∞

||uηi
− u1|| < lim

i→∞
||uηi

− u2||

= lim
η→∞

||uη − u2|| = lim
t→∞

||uηt
− u2||

< lim
t→∞

||uηt
− u1|| = lim

η→∞
||uη − u1||.

Subsequently, we proved that limη→∞ ||uη − u1|| < limη→∞ ||uη − u1|| which is
a contradiction. Thus proof is finished.

In this result, we obtain a strong convergence for our scheme (3) in the
setting of mappings with enriched (C) condition.

Theorem 3.4. Suppose U is convex in a UCBS Z and S : U → U . If
S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained from (3).
Then {uη} converges strongly to a fixed point of S provided that U is compact.
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Proof. Due to the convexity of the set U , there exists a subsequence {uηi
}

that satisfies limi→∞ ||uηi
− u0|| = 0, for some u0 ∈ U . Also, in the view of

Theorem 3.2, limη→∞ ||uηi
−Sλuηi

|| = 0. According to Lemma 2.3, Sλ satisfies
the (C) condition. Thus using Proposition 1.1(ii), to get

||uηi
− Sλu0|| ≤ 3||uηi

− Sλuηi
||+ ||uηi

− u0||.

Now set limi→∞ on both sides of the above estimates, we get limi→∞ ||uηi
−

Sλu0|| = 0, that is, uηi → Sλu0. It follows that Sλu0 = u0. This proves that u0

is a fixed point for Sλ and hence for S. But by Lemma 3.1, limη→∞ ||uη − u0||
exists. Eventually, u0 is a strong limit for {uη}. This finishes the required
proof.

Theorem 3.5. Suppose U is convex and closed in a UCBS Z and S :
U → U . If S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained
from (3). Then {uη} converges strongly to a fixed point of S provided that
lim infη→∞ dist(uη, FSλ

) = 0.

Proof. Since the proof of this theorem is elementary hence we neglect it.

Senter and Dotson [20] essentially provided the following condition of self-
maps.

Definition 3.6. [20] Take any convex subset U of a UCBS Z a selfmap
S : U → U is said to satisfy the condition (I) provided that one can find a
function ξ such that ξr = 0 whenever r = 0, ξr > 0 for every choice of r > 0
and ||u− Su|| ≥ ξ(dist(u, FS)) for all elements u in the set U .

We close the section with the result that is proved under the condition (I).

Theorem 3.7. Suppose U is convex and closed in a UCBS Z and S :
U → U . If S satisfies the enriched (C) condition FS ̸= ∅ and {uη} is obtained
from (3). Then {uη} converges strongly to a fixed point of S provided that Sλ

satisfies condition (I).

Proof. In the view of Theorem 3.2, we have lim infη→∞ ||uη − Sλuη|| = 0.
Thus, by condition (I) of Sλ, it follows that lim infη→∞ dist(uη, FSλ

) = 0.
Applying Theorem 3.5 that, {uη} strongly converges to a fixed point of S.

4. Rate of convergence

The purpose of this section is to use a numerical example of a mapping
satisfying enriched (C) condition that does not satisfy the ordinary (C) condi-
tion. Using this example, we shall show by that our iterative scheme converges
better to a fixed point corresponding to some other methods.
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Example 4.1. Define a mapping S : [0.1, 2] → [0.1, 2] by Su = 1
5u . We

shall prove that S is enriched nonexpansive but not nonexpansive. First note
that, when u = 1 and u′ = 0.1, we have |Su − Su′| = | 15 − 1

0.5 | = |0.2 − 2| =
1.8 > 0.9 = |u − u′|. Hence S is not nonexpansive. Next, we prove that S
is enriched nonexpansive. For this, if u = u′, then we have nothing to prove.
Hence, we assume that u ̸= u′. Consider

|b(u− u′) +
1

5u
− 1

5u′ | ≤ (b+ 1)|u− u′|.

if and only if

|b(u− u′) +
u′ − u

5uu′ | ≤ (b+ 1)|u− u′|,

if and only if

|u− u′| × |b− 1

5uu′ || ≤ (b+ 1)|u− u′|,

if and only if

|b− 1

5uu′ || ≤ (b+ 1).

This hold for b = 20. The unique fixed point of S is
√

1
5 = 0.4472135955.

Now using Example 4.1, we construct a table. Clearly, our method converges
to the fixed point of S for any starting value. Moreover, our method provides
better accuracy as compared some other schemes of the literature. This fact is
displayed in the Table 1 and Figure 1.



On M-Iterative Scheme for Mappings with Enriched (C) Condition 547

Table 1. Numerical convergence using Example 4.1.

η M Thakur Agarwal
1 0.7 0.7 0.7
2 0.6633824473932 0.6697228677604 0.6688025787270
3 0.6314392941424 0.6426220547695 0.6409914365938
4 0.6037005007725 0.6184379026916 0.6162780317783
5 0.5797227795521 0.5969226327351 0.5943877892181
6 0.5590897417974 0.5778402643516 0.5750600534082
7 0.5414126329067 0.5609667669523 0.5580482960237
8 0.5263313023766 0.5460903622527 0.5431204716532
9 0.5135150761551 0.5330118902029 0.5300594135505
10 0.5026632670040 0.5215451561327 0.5186631719480
11 0.4935051560201 0.5115171895820 0.5087452176588
12 0.4857993820072 0.5027683637935 0.5001344594774
13 0.4793327651699 0.4951523458354 0.4926750509523
14 0.4739186556180 0.4885358678055 0.4862259865906
15 0.4693949320803 0.4827983269980 0.4806605069641
16 0.4656217853869 0.4778312360231 0.4758653452678
17 0.4624794116320 0.4735375520390 0.4717398547327
18 0.4598657192032 0.4698309179408 0.4681950578139
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Figure 1. Graphical behavior of M (3), Thakur (2) and Agar-
wal (1) iterative schemes.
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5. Application

In this section, we suggest an iterative scheme based on (3) for solving a
split feasibility problem. It is known that if Z1 and Z1 denotes essentially two
Hilbert spaces and G : Z1 → Z2 is linear and bounded. Subsequently, a split
feasibility problem (SFP) reads as follows (see, e.g., [10] and others):

(9) Search a∗ ∈ C such that Ga∗ ∈ Q,

provided that C and Q are compact, nonempty and convex.
As many knows, in [26], there are many problems that can be reduced to

the form of SFPs. Thus here, we may assume that the SFP (9) admits at-
least one solution and essentially we denote its solution set by Ss. In [26], the
author proved that if a∗ ∈ C is a solution for (9) then a∗ solved the equation
u = P C(Id − µG∗(Id − PQ)G)u and vice versa provided that P C and PQ

stand respectively for the nearest point projection (NPP) onto C and Q, µ > 0
and the operator G∗ stands for adjoint operator of G. Byrne [9] proved that
when ξ denotes a spectral radius of G∗G such that 0 < µ < 2

ξ the operator

S = PC(Iid − µG∗(I − PQ)G) is nonexpansive. In this case, the CQ iterative
scheme that generates a sequence as follows converges to a solution of the
problem (9):

uη+1 = P C(Id − µG∗(Id − PQ)G)uη, η ≥ 1.

In this research, our approach is to consider mappings with enriched (C)
condition that generally not on their domains (as we observed in Example 1.3),
instead of nonexpansive mappings which are continuous on their domains. Next
we suggest a new type of iterative method which is based on (3).

Theorem 5.1. Suppose the SFP (9) is such that Ss ̸= ∅, 0 < µ < 2
ξ and

P C(Iid − µG∗(Iid − PQ)G) is endowed with enriched (C) condition. Assume
that there exists αη ∈ (0, 1) so that {uη} a sequence generated as:

u1 ∈ C,
wη = (1− αη)uη + αηPC(Iid − µG∗(Iid − PQ)G)uη,
vη = P C(Iid − µG∗(Iid − PQ)G)wη,
uη+1 = P C(Iid − µG∗(Iid − PQ)G)vη, η ≥ 1.

Subsequently, {uη} converges weakly to some a∗ ∈ Ss, that is, to some solution
of SFP (9).

Proof. We know that every Hilbert space satisfies the Opial’s property. Now
we put S = P C(Id − µG∗(Id − PQ)G). Then by assumption Sλ satisfies the
enriched (C) condition. Therefore all the requirements for Theorem 3.3 are
available and hence {uη} converges weakly to a point of FS . But FS = Ss, it
follows that {uη} converges weakly to a solution a∗ of the SFP (9).

Once a weak convergence for an iterative scheme is established then one
looks for the strong convergence. In the literature, many authors studied only
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weak convergence for the problem (9) and some of these authors took interest
in the strong convergence [26]. Our next result establishes a strong convergence
result for (9) as follows.

Theorem 5.2. Suppose the SFP (9) is such that Ss ̸= ∅, 0 < µ < 2
ξ and

P C(Iid − µG∗(Iid − PQ)G) is endowed with enriched (C) condition. Assume
that there exists αη ∈ (0, 1) so that {uη} a sequence generated as:

u1 ∈ C,
wη = (1− αη)uη + αηPC(Iid − µG∗(Iid − PQ)G)uη,
vη = P C(Iid − µG∗(Iid − PQ)G)wη,
uη+1 = P C(Id − µG∗(Iid − PQ)G)vη, η ≥ 1.

Subsequently, {uη} converges strongly to some a∗ ∈ Ss, that is, to some solution
of SFP (9).

Proof. Suppose that S = P C(Iid − µG∗(Iid − PQ)G). Then by assumption
Sλ satisfies the enriched (C) condition. Therefore all the requirements for
Theorem 3.4 are available and hence {uη} converges strongly to a point of FS .
But FS = Ss, it follows that {uη} converges weakly to a solution a∗ of the SFP
(9).

6. Conclusions

In this article, we have started the approximation of fixed points for the
recently suggested class of nonlinear mappings so-called mappings satisfying
the enriched (C) condition. We utilized the iteration scheme M using the
techniques of averaged mappings, and proved its weak and strong convergence.
Some numerical computations are suggested for validation of the main outcome.
The observations show that the effectiveness of M iterative scheme is still very
high as compared the other iterative schemes. The presented outcome improves
and extends the results of Ullah et al. [24] form Hilbert spaces to Banach spaces
and also improve the rate of convergence. Moreover, the results of this paper
extends the corresponding results of Thakur et al. [23] and Ullah and Arshad
[25] form mappings satisfying (C) condition to the more general setting of
mappings satisfying the enriched (C) condition. Eventually, we solve a SFP in
a general setting of enriched mappings and general M-iterative scheme.

7. Open problems

Now, we pose an open problem which is as follows.
Problem 1. Can we improve all results of this paper to nonlinear spaces?
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