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PERFECT POWERS AS DIFFERENCE OF PERRIN

NUMBERS AND PADOVAN NUMBERS

Merve Güney Duman

Abstract. In this paper, we investigate the perfect powers that are
the difference between Perrin numbers (Rk)k≥0 and Padovan numbers

(Pk)k≥0. Hence, we solve the equations Pn = xa, 2Pn = xa, Pn −Rm =

xa, or Rn−Pm = xa such that a ≥ 1 and 2 ≤ x ≤ 10 are positive integers
and n, m, and k are non-negative integers.

1. Introduction

In recent years, researchers have studied generalized Fibonacci numbers and
their multiples and Lucas numbers under certain conditions. They have used
congruence, properties of the Legendre symbol, and linear forms of logarithms
in their studies. Bugeaud et al. [6] found that the perfect powers among Lucas
numbers are Ln ∈ {1, 4} and among Fibonacci numbers are Fn ∈ {0, 1, 8, 144}.
Bugeaud et al. [7] determined all non-negative integer solutions of the equa-
tions Fn ± 1 = yp for p ≥ 2. Farrokhi [11] solved the equation Fn = kFm and
found that it has a solution (n,m) where k = Fa1

Fa2
· · ·Fan

. Bravo and Luca
[4] showed that the perfect power of 2 can be expressed as a sum of two Fi-
bonacci numbers. Tiebekabe and Diouf [24] discovered that the perfect power
of 2 can be expressed as a difference of two Lucas numbers. Patel et al. [19]
determined that the perfect power of an odd prime p can be represented as
either a sum or a difference of two Lucas numbers, where p < 103. Luca and
Patel [17] showed that all perfect powers are sums of two Fibonacci numbers
where p ≥ 2 and n ≡ m(mod 2). Erduvan and Keskin [10] proved that all
non-negative integer solutions of the equation Fn − Fm = 5a are (n,m, a) ∈
{(4, 3, 1), (6, 4, 1), (7, 6, 1), (5, 0, 1), (1, 0, 0), (3, 1, 0), (2, 0, 0), (3, 2, 0)}. Şiar and
Keskin [23] determined that all non-negative integer solutions of the equation
Fn−Fm = 2a are (n,m, a) ∈ {(5, 2, 2), (5, 4, 1), (1, 0, 0), (2, 0, 0), (3, 0, 1), (3, 1, 0),
(3, 2, 0), (4, 1, 1), (4, 2, 1), (4, 3, 0), (5, 1, 2), (8, 5, 4), (8, 7, 3), (9, 3, 5), (6, 0, 3),
(7, 5, 3)}. Bitim and Keskin [3] demonstrated that all non-negative integer solu-
tions of the equation Fn − Fm = 3a are (n,m, a) ∈ {(11, 6, 4), (6, 5, 1), (3, 1, 0),
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(3, 2, 0), (4, 0, 1), (4, 3, 0), (5, 3, 1), (1, 0, 0), (2, 0, 0)}.
Some authors have conducted similar research on generalized Lucas numbers
(Vn) and generalized Fibonacci numbers (Un) under certain assumptions. Ke-
skin and Demirtürk [14] demonstrated that there is no solution to the equation
Ln = LmLrx

2 under certain assumptions. Keskin and Şiar [15] investigated the
equations Un = UrUm, Vn = VrVmx2, and Vn = VmVr. Some authors have ex-
amined equations such as Un = x2, Un = kx2, Vn = x2, Un = kUmx2, Vn = kx2,
and Vn = kVmx2 under certain assumptions involving k, P , and Q, where
Un = Un(P,Q) and Vn = Vn(P,Q). Rihane and Togbé [22] demonstrated
Padovan numbers which are Pell or Pell-Lucas numbers, and Perrin numbers
which are Pell or Pell-Lucas numbers. For more details, see [11]-[12].

Assume that η is an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
j=1

(
x− η(j)

)
∈ Z[x]

where the η(j)’s are conjugates of η and the aj ’s are relatively prime integers
with a0 > 0. Then,

h(η) =
1

d

log a0 +

d∑
j=1

log
(
max

{
1, |η(j)|

})
is called the logarithmic height of η. Moreover, if η = a/b is a rational number
with b ≥ 1 and gcd(a, b) = 1, then h(η) = log (max {|a|, |b|}). Here are the
recalled inequalities based on the reference [8]:

h(γ ± η) ≤ log 2 + h(γ) + h(η)

h(γ±mη±r) ≤ |m|h(γ) + |r|h(η).
Let (Rk)k≥0 be the sequence of Perrin numbers given by

R0 = 3, R1 = 0, R2 = 2, Rk = Rk−2 +Rk−3

and (Pk)k≥0 be the sequence of Padovan numbers given by

P0 = P1 = P2 = 1, Pk = Pk−2 + Pk−3

for k ≥ 3. Suppose that

α =
(
(9−

√
69)/18

)1/3

+
(
(9 +

√
69)/18

)1/3

and

γ = β=−
((

(27− 3
√
69)/2

)1/3

(1 + i
√
3)/6

)
−
((

(9 +
√
69)/18

)1/3

(1− i
√
3)/2

)



554 Merve Güney Duman

are the roots of the characteristic equation x3 −x− 1 = 0. The Binet formulas
for these numbers are:

P k = tαk + sβk + rγ
k

Rk = αk + βk + γ
k

where

23t= α3 + 7α2+2, 23s = β3 + 7β2 + 2, r = s.

and the minimal polynomial of t over Z is given by 23x3 − 23x2 + 6x − 1.
Moreover, with simple calculation, for k ≥ 1, it can be shown that

0.86 < |β| = |γ| = α−1/2 < 0.87

1.32 < α < 1.33

0.24 < |s| = |r| < 0.25

h(t) ≤ 1

3
log 23

|e(k)| :=
∣∣Pk − tαk

∣∣
≤ |s|α−k/2 + |r|α

−k/2

< 0.5α−k/2(1)

and

|e′(k)| :=
∣∣Rk − αk

∣∣
≤ |β|k + |γ|k < 2α−k/2.(2)

By induction method, it can be observed that

Rk = Pk+1 + Pk−10

αk−2 ≤ Pk ≤ αk−1, for k ̸= 3, k ≥ 1

and

αk−2 ≤ Rk ≤ αk+1, for k ≥ 2.

It is clear that

[Q(α, β) : Q] ≃ {(1), (αβ), (αγ), (αγβ), (βγ), (αβγ)} ≃ S3,

[Q(α, β) : Q] = 6,

[Q(α) : Q] = 3.

Let a, n, x, k, and m be non-negative integers where a ≥ 1 and 2 ≤ x ≤ 10. In
this study, we solve the Diophantine equation

(3) bPn = xa
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where b = 1, 2 and find as (b, Pn) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 7),
(1, 9), (1, 16), (1, 49), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 16)}. Later, we solve the
Diophantine equation

(4) Pn −Rm = xa

and obtain as

Pn ∈ {2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 151, 200, 265, 465} .
Finally, we solve the Diophantine equation

(5) Rn − Pm = xa

and show as

Rn ∈ {3, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 1130, 3480} .

2. Preliminaries

This section will give some lemmas necessary for the proof of theorems.
These lemmas provide the basic inequalities and properties related to the log-
arithmic height of algebraic numbers, Diophantine approximations, and con-
tinued fractions. These results will be useful in determining the bounds and
solutions for the equations considered.

Lemma 2.1. [26] Let a, x ∈ R. If |x| < a and 0 < a < 1 , then

|log(1 + x)| < − |x| log(1− a)

a
and

a

1− e−a
|ex − 1| > |x| .

The following lemma is given, as found in Corollary 2.3 of Matveev [18] or
Theorem 9.4 in [6].

Lemma 2.2. Assume that γ1, γ2, · · · , and γt are positive real algebraic
numbers in a real algebraic number field K of degree D, Λ := γb1

1 · · · γbt
t −1 ̸= 0,

and b1, b2, · · · bt are nonzero integers. Then,

|Λ| > exp
(
−(1 + logB)D2(1 + logD)1.4t4.530t+3A1A2 · · ·At

)
wheremax {|bi|} ≤ B andmax {0.16, Dh(γi), | log γi|}) ≤ Ai for all i ∈ {1, 2, · · · , t}.

Lemma 2.3. [16] Let τ be an irrational number where τ = [a0; a1, a2, a3, · · · ],
p0/q0, p1/q1, · · · be all the convergent of the continued fraction expansion of τ
and s, r, and M be positive integers, and N be a non-negative integer such that
qN > M . Then, the inequality∣∣∣τ − r

s

∣∣∣ > 1

(a(M) + 2)s2

holds for all (r, s) with a(M) := max {ai : i = 0, 1, · · · , N} and 0 < s < M .
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Lemma 2.4. [5] Let A > 0, B > 1, and µ be some real numbers, u, v,M ,
and w be positive integers and p/q be a convergent of the continued fraction of
the irrational number γ such that q > 6M . Let ϵ := ||qµ|| −M ||qγ||. If ϵ > 0,
then there exists no solution to the inequality

0 < |γu+ µ− v| < AB−w

with

u ≤ M and w ≥ log(qA/ϵ)

logB
.

3. Main Theorem

Theorem 3.1. Let a ≥ 1 and 2 ≤ x ≤ 10 be positive integers, and b ∈
{1, 2}. If the equation bPn = xa has a solution, then

(b, Pn, n, x, a) ∈ {(1, 2, 3, 2, 1), (1, 2, 4, 2, 1), (1, 3, 5, 3, 1), (1, 4, 6, 2, 2), (1, 4, 6, 4, 1),

(1, 5, 7, 5, 1), (1, 7, 8, 7, 1), (1, 9, 9, 3, 2), (1, 9, 9, 9, 1), (1, 16, 11, 2, 4),

(1, 16, 11, 4, 2), (1, 49, 15, 7, 2), (2, 1, 0, 2, 1), (2, 1, 1, 2, 1), (2, 1, 2, 2, 1),

(2, 2, 3, 2, 2), (2, 2, 3, 4, 1), (2, 2, 4, 2, 2), (2, 2, 4, 4, 1), (2, 3, 5, 6, 1),

(2, 4, 6, 2, 3), (2, 4, 6, 8, 1), (2, 5, 7, 10, 1), (2, 16, 11, 2, 5)}.

Proof. The equation bPn = xa holds. Suppose that n < 185. Then, it
can be seen that the given solutions are provided with the help of a computer
program. Suppose that n ≥ 185. Since

bPn = b(tαn + sβn + rγn) = xa,

we obtain

btαn − xa = −b(sβn + rγn).

Then

(6)

∣∣∣∣1− 1

bt
α−nxa

∣∣∣∣ ≤ b|sβn + rγn|
btαn

<
0.5

tαn
≤ 0.7

αn
. <

To apply Lemma 2.2, we take

(7) (Λ, γ1, γ2, γ3, b1, b2, b3) :=

(
1− α−nxa

bt
, α, x, bt,−n, a,−1

)
.

Then, it can be easily seen that Λ ̸= 0. We can choose

(8) (A1, A2, A3) := (logα, log x3, 5.22).

Because,

h(x) := log x, h(α) :=
logα

3
, h(bt) ≤ log b+

1

3
log 23.
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Since B ≥ max {a, | − 1|, | − n|} and αn−1 ≥ Pn = xa ≥ 2a > α2a, we can take
B := n. From Lemma 2.2 and (6)-(8), we have

n logα− log 0.7 < 30524.55.22 · 9 · 1.4(1 + log 3) logα(1 + log n) log x3

< 1.48 · 1011(log n+ 1).

Hence, we get n < 1.66 · 1013. Assume that z := logα · n − log x · a + log(bt).
Here, |ez − 1| < 0.7

αn < 0.001 and from Lemma 2.1, we write

(9) |z| < log(1000/999)

0.001

0.7

αn
< 0.71α−n

and find

0 <

∣∣∣∣ logαlog x
· n+

log(bt)

log x
− a

∣∣∣∣ < 1.10

αn
.

Then, µ :=
log(bt)

log x
, γ :=

logα

log x
/∈ Q, M := 1.66 · 1013 > n. Therefore, the

denominator of the 37th convergent of γ exceeds 6M . From Lemma 2.4, if
log(1.1q37/ϵ)/ logα < 180.8 < n, there is no solution to (9). Hence, we get
n ≤ 180. This is impossible since n ≥ 185.

Theorem 3.2. Let a ≥ 1 and 2 ≤ x ≤ 10 be positive integers. If the
equation Pn −Rm = xa has a solution, then

(Pn, n,m, x, a) ∈ {(2, 3, 1, 2, 1), (3, 5, 1, 3, 1), (2, 4, 1, 2, 1), (4, 6, 1, 2, 2), (4, 6, 1, 4, 1),

(4, 6, 2, 2, 1), (5, 7, 1, 5, 1), (4, 6, 4, 2, 1), (5, 7, 0, 2, 1), (5, 7, 2, 3, 1),

(5, 7, 3, 2, 1), (5, 7, 4, 3, 1), (7, 8, 0, 2, 2), (7, 8, 0, 4, 1), (7, 8, 1, 7, 1),

(7, 8, 2, 5, 1), (7, 8, 3, 2, 2), (7, 8, 3, 4, 1), (7, 8, 4, 5, 1), (7, 8, 5, 2, 1),

(7, 8, 6, 2, 1), (9, 9, 0, 6, 1), (9, 9, 1, 3, 2), (9, 9, 1, 9, 1), (9, 9, 2, 7, 1),

(9, 9, 3, 6, 1), (9, 9, 4, 7, 1), (9, 9, 5, 2, 2), (9, 9, 5, 4, 1), (86, 17, 5, 9, 2),

(9, 9, 6, 4, 1), (9, 9, 7, 2, 1), (12, 10, 0, 3, 2), (12, 10, 0, 9, 1), (9, 9, 6, 2, 2),

(12, 10, 3, 3, 2), (12, 10, 3, 9, 1), (12, 10, 4, 10, 1), (12, 10, 5, 7, 1),

(12, 10, 7, 5, 1), (12, 10, 8, 2, 1), (16, 11, 1, 2, 4), (16, 11, 1, 4, 2),

(16, 11, 7, 9, 1), (16, 11, 8, 6, 1), (16, 11, 9, 2, 2), (16, 11, 9, 4, 1),

(21, 12, 5, 4, 2), (21, 12, 6, 2, 4), (21, 12, 6, 4, 2), (21, 12, 9, 3, 2),

(21, 12, 10, 2, 2), (21, 12, 10, 4, 1), (28, 13, 0, 5, 2), (28, 13, 3, 5, 2),
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(28, 13, 9, 4, 2), (28, 13, 11, 6, 1), (37, 14, 5, 2, 5), (37, 14, 6, 2, 5),

(37, 14, 9, 5, 2), (37, 14, 12, 2, 3), (37, 14, 12, 8, 1), (49, 15, 1, 7, 2),

(49, 15, 11, 3, 3), (49, 15, 13, 10, 1), (65, 16, 12, 6, 2), (86, 17, 5, 3, 4),

(86, 17, 6, 3, 4), (86, 17, 6, 9, 2), (86, 17, 11, 2, 6), (86, 17, 11, 4, 3),

(151, 19, 17, 2, 5), (21, 12, 5, 2, 4), (265, 21, 11, 3, 5), (465, 23, 19, 2, 8),

(12, 10, 6, 7, 1), (16, 11, 7, 3, 2), (21, 12, 9, 9, 1), (200, 20, 17, 3, 4),

(28, 13, 9, 2, 4), (37, 14, 8, 3, 3), (49, 15, 10, 2, 5), (12, 10, 2, 10, 1),

(86, 17, 11, 8, 2), (200, 20, 17, 9, 2), (151, 19, 14, 10, 2), (465, 23, 19, 4, 4)}.

Proof. The equation Pn −Rm = xa holds. Assume that n < 270. It can be
seen that the given solutions are provided with the help of a computer program.
Suppose that n ≥ 270 and m = 1. Then, Pn = xa. From Theorem 3.1, this is
impossible. Assume that n ≥ 270, (n−m) < 3, and m ̸= 1. Since R0 = R3 = 3
and R2 = R4 = 2, we can take m ≥ 3 and since αn−1 ≥ Pn = Rm + xa ≥
αm−2 + 2a > αm−2, we find n−m > −1. Then,

2a ≤ xa = Pn −Rn = Pn − Pn+1 − Pn−10 = −Pn−4 − Pn−10 < 0

2a ≤ xa = Pn −Rn−1 = −Pn−11 < 0

xa = Pn −Rn−2 = Pn − Pn−1 − Pn−12 = Pn−5 − Pn−12 = 2Pn−8.

These are impossible, from Theorem 3.1. Suppose n ≥ 270, m ̸= 1, and
n − m ≥ 3. Since R0 = R3 = 3 and R2 = R4 = 2, we can take m ≥ 3. We
write

Pn = tαn + sβn + rγn = αm + βm + γm + xa

from (4). We can write

tαn − xa = −(sβn + rγn) +Rm

and

tαn − αm − xa = (βm + γm)− (sβn + rγn).

Then, from (1) and (2), for n ≥ 270, m ≥ 3, and n−m ≥ 3,∣∣∣∣1− 1

t
α−nxa

∣∣∣∣ ≤ |sβn + rγn|
tαn

+
Rm

tαn

≤ |e(n)|
tαn

+
αm+1

tαn

≤ 0.5

tαn+n/2
+

1

tαn−m−1
<

1.39

αn−m−1
(10)
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and ∣∣∣∣1− xa

(t− αm−n)αn

∣∣∣∣ ≤ |βm + γm|
(t− αm−n)αn

+
|sβn + rγn|

(t− αm−n)αn

=

∣∣∣∣ 1

(t− αm−n)

∣∣∣∣ [ |e′(m)|
αn

+
|e(n)|
αn

]

<

∣∣∣∣ 1

(t− α−3)

∣∣∣∣ [ 2

αnαm/2
+

0.5

αnαn/2

]

≤ 4.5

αn
.(11)

By using Lemma 2.2, we take

(12) (Λ1, γ1, γ2, γ3, b1, b2, b3) :=

(
1− xa

tαn
, α, x, t,−n, a,−1

)

(Λ2, γ
′
1, γ

′
2, γ

′
3) :=

(
1− xa

αn(t− αm−n)
, α, x,

1

t− αm−n

)
(13)

(b′1, b
′
2, b

′
3) := (−n, a, 1).(14)

Hence, it can be observed that Λ1 ̸= 0 and Λ2 ̸= 0. Since

h(x) ≤ log x, h(α) ≤ logα

3
, h(t) ≤ 23/3

h

(
1

t− αm−n

)
h(α) ≤ (n−m) + log2 + h(t) +

logα

3
(n−m) ≤ +1.74,

we can choose

(A1, A2, A3) := (logα, log x3, 3.14)(15)

(A′
1, A

′
2, A

′
3) := (logα, log x3, 5.22 + logα(n−m))(16)

and since

αn−1 ≥ Pn = Rm + xa > 2a > α2a,

B ≥ max{| − 1|, | − n|, a} and B′ ≥ max {1, n, a}, we can choose

(17) B′ := B := n.

From Lemma 2.2 and (10)-(17), we obtain

1.39αm−n+1 > |Λ1| > exp
(
−30634.5331.4 · 3.14 logα log x(1 + log 3)(1 + log n)

)
,

i.e.,

logα(n−m) < log(1.39α) + 1.65 · 1013(1 + log n),
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and so

4.5α−n > |Λ2|
> exp

(
−30636.51.4 logα log x3(1 + log 3)(1 + log n) ((n−m) logα+ 5.22)

)
.

Hence,

logαn−log 4.5 <
(
1.65 · 1013(1 + log n) + log(1.39α) + 5.22

)
5.26·1012(1+log n)

and n < 1.54 ·1030. Assume that z1 := logαn−a log x+log t. Then, |ez1 − 1| <
1.39

αn−m−1 < 0.8 for n−m ≥ 3. From Lemma 2.1, we obtain

|z1| <
log(10/2)

0.8

1.39

αn−m−1
< 3.71α−n+m,

i.e.,

(18) 0 <

∣∣∣∣ logαlog x
n+

log t

log x
− a

∣∣∣∣ < 5.4

αn−m
.

We take M := 1.54 · 1030 > n, γ :=
logα

log x
/∈ Q, and µ := log t/ log x. From

Lemma 2.4, we find ϵ > 0 and if

log(5.4q71/ϵ)/ logα < 350.2 < n−m,

then there is no solution to (18). Because the denominator of the 71st conver-
gent of γ exceeds 6M . Hence, n−m ≤ 350 and n < 7.8 · 1016 from (10). Now,
we will find a better bound for n by using Lemma 2.4. Let

z2 := logαn− log xa− log

(
1

t− αm−n

)
.

We write

|ez2 − 1| < 4.5

αn
< 0.01

for n ≥ 270 from (11). From Lemma 2.1, we obtain

|z2| <
log(100/99)

0.01

4.5

αn
< 4.53α−n

and

(19) 0 <

∣∣∣∣∣∣ logαlog x
n−

log
(

1
t−αm−n

)
log x

− a

∣∣∣∣∣∣ < 6.54α−n.

We determine M := 7.8 · 1016 > n and γ =
logα

log x
/∈ Q. It can be shown that

q47 exceeds 6M . Take µ := −
log

(
1

t−αm−n

)
log x , w := n,A := 6.54, and B := α in

Lemma 2.4. Then, we find ϵ > 0 and we can observe that (19) has no solution,
if

log(6.54q47/ϵ)

logα
< 261.1 < n
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for each 3 ≤ n − m ≤ 350. Hence, we get n ≤ 261. This is impossible since
270 ≤ n.

Theorem 3.3. Let a ≥ 1 and 2 ≤ x ≤ 10 be positive integers. If the
equation Rn − Pm = xa has a solution, then

(Rn, n,m, x, a) ∈ {(3, 0, 0, 2, 1), (5, 5, 5, 2, 1), (3, 0, 2, 2, 1), (3, 3, 0, 2, 1), (3, 3, 1, 2, 1),

(3, 3, 2, 2, 1), (5, 6, 5, 2, 1), (3, 0, 1, 2, 1), (7, 7, 7, 2, 1), (39, 13, 14, 2, 1),

(51, 14, 15, 2, 1), (5, 5, 0, 2, 2), (5, 5, 1, 2, 2), (5, 5, 2, 2, 2), (5, 6, 0, 2, 2),

(5, 6, 1, 2, 2), (6, 2, 2, 2), (7, 7, 5, 2, 2), (90, 16, 17, 2, 2), (10, 8, 3, 2, 3),

(10, 8, 4, 2, 3), (12, 9, 6, 2, 3), (17, 10, 9, 2, 3), (29, 12, 12, 2, 3), (17, 10, 0, 2, 4),

(17, 10, 1, 2, 4), (17, 10, 2, 2, 4), (367, 21, 22, 2, 4), (39, 13, 8, 2, 5), (68, 15, 6, 2, 6),

(277, 20, 12, 2, 8), (3480, 29, 27, 2, 11), (5, 5, 3, 3, 1), (5, 5, 4, 3, 1), (5, 6, 3, 3, 1),

(5, 6, 4, 3, 1), (7, 7, 6, 3, 1), (10, 8, 8, 3, 1), (12, 9, 9, 3, 1), (68, 15, 16, 3, 1),

(10, 8, 0, 3, 2), (10, 8, 1, 3, 2), (10, 8, 2, 3, 2), (12, 9, 5, 3, 2), (209, 19, 20, 3, 2),

(7, 7, 5, 4, 1), (90, 16, 17, 4, 1), (17, 10, 0, 4, 2), (17, 10, 1, 4, 2), (17, 10, 2, 4, 2),

(367, 21, 22, 4, 2), (68, 15, 6, 4, 3), (277, 20, 12, 4, 4), (7, 7, 3, 5, 1), (17, 10, 10, 5, 1),

(7, 7, 4, 5, 1), (10, 8, 7, 5, 1), (12, 9, 8, 5, 1), (90, 16, 16, 5, 2), (7, 7, 0, 6, 1),

(119, 17, 18, 5, 1), (29, 12, 6, 5, 2), (7, 7, 2, 6, 1), (10, 8, 6, 6, 1), (22, 11, 11, 6, 1),

(7, 7, 1, 6, 1), (39, 13, 5, 6, 2), (367, 21, 19, 6, 3), (10, 8, 5, 7, 1), (12, 9, 7, 7, 1),

(158, 18, 19, 7, 1), (51, 14, 3, 7, 2), (51, 14, 4, 7, 2), (1130, 25, 26, 7, 2), (10, 8, 3, 8, 1),

(10, 8, 4, 8, 1), (12, 9, 6, 8, 1), (17, 10, 9, 8, 1), (29, 12, 12, 8, 1), (68, 15, 6, 8, 1),

(10, 8, 0, 9, 1), (10, 8, 1, 9, 1), (10, 8, 2, 9, 1), (12, 9, 5, 9, 1), (209, 19, 20, 9, 1),

(29, 12, 3, 3, 3), (29, 12, 4, 3, 3), (39, 13, 10, 3, 3), (90, 16, 9, 3, 4), (5, 5, 0, 4, 1),

(90, 16, 9, 9, 2), (12, 9, 3, 10, 1), (12, 9, 4, 10, 1), (17, 10, 8, 10, 1), (22, 11, 10, 10, 1),

(5, 5, 1, 4, 1), (5, 5, 2, 4, 1), (5, 6, 0, 4, 1), (5, 6, 1, 4, 1), (5, 6, 2, 4, 1)}.

Proof. The equation Rn−Pm = xa holds. Let n < 310. Then, it can be seen
that the given solutions are provided with the help of a computer program. Let
n ≥ 310. Since P0 = P1 = P2 = 1, P3 = P4 = 2, and αn+1 ≥ Rn = Pm + xa >
Pm ≥ αm−2, we can take n−m > −3,m ≥ 2, and m ̸= 3. On the other hand,
we find

xa = Rn − Pn+1 = (Pn+1 + Pn−10)− Pn+1 = Pn−10

xa = Rn − Pn+2 = (Pn+1 + Pn−10)− Pn+2 = Pn−10 − Pn−3 = −2Pn−6 < 0.
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These are impossible, from Theorem 3.1. Thus, we can take n − m ≥ 0. We
write

Rn = αn + βn + γn = tαm + sβm + rγm + xa.

Then

αn − xa = −(βn + γn) + Pm

and

αn − tαm − xa = (sβm + rγm)− (βn + γn).

Hence, we obtain∣∣α−nxa − 1
∣∣ ≤ |βn + γn|

αn
+

Pm

αn

≤ |e′(n)|
αn

+
αm−1

αn

<
2

αn+n/2
+

1

αn−m+1
<

1.1

αn−m+1
(20)

and ∣∣∣∣1− xa

αn(1− tαm−n)

∣∣∣∣ ≤ |sβm + rγm|
αn(1− tαm−n)

+
|βn + γn|

αn(1− tαm−n)

=

∣∣∣∣ 1

(1− tαm−n)

∣∣∣∣ [ |e(m)|
αn

+
|e′(n)|
αn

]

<

∣∣∣∣ 1

(1− tα0)

∣∣∣∣ [ 0.5

αnαm/2
+

2

αnαn/2

]

≤ 1.36

αn
(21)

from (1) and (2). By Lemma 2.2, we take

(Λ1, γ1, γ2, b1, b2) :=

(
xa

αn
− 1, α, x,−n, a

)
(22)

(Λ2, γ
′
1, γ

′
2, γ

′
3) :=

(
1− xa

αn(1− tαm−n)
, α, x,

1

1− tαm−n

)
(23)

(b′1, b
′
2, b

′
3) := (−n, a, 1).(24)

Moreover, it can be observed that Λ1 ̸= 0 and Λ2 ̸= 0. Since

h

(
1

1− tαm−n

)
≤ log 2 + h(α)(n−m) + h(t)

≤ 1.74 + logα(n−m)/3,
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we can choose

(A1, A2) := (logα, log x3)(25)

(A′
1, A

′
2, A

′
3) := (logα, log x3, logα(n−m) + 5.22)(26)

and since

αn+1 ≥ Rn = Pm + xa > 2a > α2a

B ≥ max{a, n} and B′ ≥ max{a, n, 1}, we can take

(27) B = B′ := n.

From Lemma 2.2 and (20)-(27), we find

1.1αm−n−1 > |Λ1| > exp
(
−30524.5331.4 log x(1 + log n)(1 + log 3) logα

)
,

i.e.,

(28) logα(n−m) < (1 + log n)2.83 · 1010 + log(1.1/α)

and

1.36α−n > |Λ2|
> exp

(
−30636.51.4 logα(1 + log 3) log x3(1 + log n) (5.22 + logα(n−m))

)
,

i.e.,

(29) logαn− log 1.36 < (1 + log n)5.26 · 1012 (5.22 + logα(n−m)) .

From (28) and (29), we have

logαn−log 1.36 < (1+log n)5.26·1012
(
5.22 + 2.83 · 1010(1 + log n) + log(1.1/α)

)
.

Hence, it follows that n < 2.17 · 1027. Assume that

z3 := n logα− a log x

from (20). Then,

|ez3 − 1| < 1.1

αn−m+1
< 0.85

for n−m ≥ 0. From Lemma 2.1, we write

|z3| <
log(100/15)

0.85

1.1

αn−m+1
< 1.86α−n+m

and get

0 <

∣∣∣∣ logαlog x
− a

n

∣∣∣∣ < 2.7

nαn−m
.

Moreover, we can choose M := 2.17 · 1027 > n and γ :=
logα

log x
/∈ Q. Then, q63

exceeds M . Let n−m ≥ 255. Hence, we have αn−m

5.4 > n and∣∣∣∣ logαlog x
− a

n

∣∣∣∣ < 2.7

n
αm−n <

1

2n2
.
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We can see that the rational number a
n is a convergent of logα

log x . Let pr

qr
be

r-th convergent of logα
log x and a

n = pt

qt
, for some t. Then, we find q63 > 2 · 1027

and also aM = max{ai|i = 0, 1, · · · , 63} = 433. From Lemma 2.3, we have∣∣∣ logα
log x − pt

qt

∣∣∣ > 1
435n2 and 2.7

n αm−n > 1
435n2 .

Then,

2 · 10−31 >
2.7

α255
≥ 2.7

αn−m
>

1

435n
>

1

435 · 2 · 1027
> 1.14 · 10−30.

But, this is impossible. Thus, we have n − m < 255 and n < 5.7 · 1016 from
(29). Let

z4 := logαn− log xa− log

(
1

1− tαm−n

)
.

We obtain

|ez4 − 1| < 1.36

αn
< 0.001

for n ≥ 310. From Lemma 2.1, we have

|z4| <
log(1000/999)

0.001

1.36

αn
< 1.37α−n

and so

(30) 0 <

∣∣∣∣∣∣ logαlog x
n−

log
(

1
1−tαm−n

)
log x

− a

∣∣∣∣∣∣ < 1.98α−n.

If we can choose γ =
logα

log x
/∈ Q and M := 5.7 · 1016 > n, then q57 > 6M . We

take µ := −
log

(
1

1−tαm−n

)
log x , w := n,A := 1.98, and B := α. The inequality (30)

has no solution, if
log(1.98q57/ϵ)

logα
< 299.99 < n

where 0 ≤ n−m ≤ 255. Hence, n ≤ 299. This is a impossible since 310 ≤ n.

4. Conclusion

This study delves into solving certain Diophantine equations through the
application of Baker’s theory and reduction methods. Initially, we established
the upper limit of n by examining linear forms in logarithms. Subsequently,
we further refined this upper bound using reduction techniques. Additionally,
the same methods proved effective in addressing perfect powers that are either
the sum or product of a Perrin number or a Padovan number, as well as com-
binations of two Perrin numbers or two Padovan numbers. Furthermore, the
equation Pn = bxa can be extended by determining solutions for various values
of b.
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[23] Z. Şiar and R. Keskin, On the Diophantine equation Fn − Fm = 2a, Colloq. Math. 159

(2020), 119–126.
[24] P. Tiebekabe and I. Diouf, On solutions of the Diophantine equation Ln + Lm = 3a,

Malaya Journal of Matematik 9 (2021), no. 4, 228–238.

[25] P. Tiebekabe and I. Diouf, Power of three as difference of two Fibonacci numbers, JP J
Algebr. Number Theory 49 (2021), no. 2, 185–196.

[26] B. M. M. De Weger, Algorithms for Diophantine equations, CWI Tracts 65, Stichting

Mathematisch Centrum, Amsterdam, 1989.
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