Acknowledgement
This study was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ015612), Rural Development Administration and Chung-Ang University Graduate Research Scholarship 2023, Republic of Korea.
References
- Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25:5637-44. https://doi.org/10.1016/j.vaccine.2006.10.051
- Chan PKS. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis 2002;34(Suppl 2):S58-64. https://doi.org/10.1086/338820
- Swayne DE. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis 2007;51:242-9. https://doi.org/10.1637/7763-110706-regr.1
- Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 2006;80:7469-80. https://doi.org/10.1128/JVI.02677-05
- Iwasaki A, Foxman EF, Molony RD. Early local immune defences in the respiratory tract. Nat Rev Immunol 2017;17:7-20. https://doi.org/10.1038/nri.2016.117
- Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol 2007;19:711-20. https://doi.org/10.1016/j.coi.2007.08.004
- Wu NH, Yang W, Beineke A, et al. The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells. Sci Rep 2016;6:39668. https://doi.org/10.1038/srep39668
- Vu TH, Hong Y, Truong AD, et al. The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines. Anim Biosci 2022;35:964-74. https://doi.org/10.5713/ab.21.0420
- Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol 2007;19:711-20. https://doi.org/10.1016/j.coi.2007.08.004
- Daidoji T, Kajikawa J, Arai Y, Watanabe Y, Hirose R, Nakaya T. Infection of human tracheal epithelial cells by H5 avian influenza virus is regulated by the acid stability of hemagglutinin and the pH of target cell endosomes. Viruses 2020;12:82. https://doi.org/10.3390/v12010082
- Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. Physiology 2001;16:126-30. https://doi.org/10.1152/physiologyonline.2001.16.3.126
- Linfield DT, Raduka A, Aghapour M, Rezaee F. Airway tight junctions as targets of viral infections. Tissue Barriers 2021;9:1883965. https://doi.org/10.1080/21688370.2021.1883965
- Short KR, Kasper J, van der Aa S, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016;47:954-66. https://doi.org/10.1183/13993003.01282-2015
- Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020;127:154961. https://doi.org/10.1016/j.cyto.2019.154961
- Lee J, Hong Y, Vu TH, et al. Influenza A pathway analysis of highly pathogenic avian influenza virus (H5N1) infection in genetically disparate Ri chicken lines. Vet Immunol Immunopathol 2022;246:110404. https://doi.org/10.1016/j.vetimm.2022.110404
- Vu TH, Hong Y, Truong AD, et al. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2022;35:367-76. https://doi.org/10.5713/ab.21.0163
- Esnault E, Bonsergent C, Larcher T, et al. A novel chicken lung epithelial cell line: characterization and response to low pathogenicity avian influenza virus. Virus Res 2011;159:32-42. https://doi.org/10.1016/j.virusres.2011.04.022
- Barjesteh N, Taha-Abdelaziz K, Kulkarni RR, Sharif S. Innate antiviral responses are induced by TLR3 and TLR4 ligands in chicken tracheal epithelial cells: communication between epithelial cells and macrophages. Virology (Lond) 2019;534:132-42. https://doi.org/10.1016/j.virol.2019.06.003
- Fleming SB. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines (Basel) 2016;4:23. https://doi.org/10.3390/vaccines4030023
- Vu TH, Heo J, Hong Y, et al. HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression. J Vet Sci 2023;24:e13. https://doi.org/10.4142/jvs.22229
- Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 2015;23:154-63. https://doi.org/10.1016/j.tim.2014.12.003
- Melchjorsen J, Kristiansen H, Christiansen R, et al. Differential regulation of the OASL and OAS1 genes in response to viral infections. J Interferon Cytokine Res 2009;29:199-208. https://doi.org/10.1089/jir.2008.0050
- Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta Proteins Proteom 2005;1754:253-62. https://doi.org/10.1016/j.bbapap.2005.08.017
- Xing Z, Cardona CJ, Anunciacion J, Adams S, Dao N. Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol 2010;91:343-51. https://doi.org/10.1099/vir.0.015578-0
- Pan H, Zhang Y, Luo Z, et al. Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-kappaB and p38 MAPK signaling pathways. Am J Physiol Lung Cell Mol Physiol 2014;306:L183-95. https://doi.org/10.1152/ajplung.00147.2013
- Craig R, Larkin A, Mingo AM, et al. p38 MAPK and NF-κB collaborate to induce interleukin-6 gene expression and release: evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 2000;275:23814-24. https://doi.org/10.1074/jbc.M909695199
- Park JW, Ndimukaga M, So J, et al. Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation. J Anim Sci Technol 2023;65:183-96. https://doi.org/10.5187/jast.2022.e101
- Gao N, Rezaee F. Airway epithelial cell junctions as targets for pathogens and antimicrobial therapy Pharmaceutics 2022;14:2619. https://doi.org/10.3390/pharmaceutics14122619
- Ruan T, Sun Y, Zhang J, et al. H5N1 infection impairs the alveolar epithelial barrier through intercellular junction proteins via Itch-mediated proteasomal degradation. Commun Biol 2022;5:186. https://doi.org/10.1038/s42003-022-03131-3
- Wei J, Jiang H, Gao H, Wang G. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction. Biochem Biophys Res Commun 2015;461:555-9. https://doi.org/10.1016/j.bbrc.2015.04.080
- Tata PR, Mou H, Pardo-Saganta A, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013;503:218-23. https://doi.org/10.1038/nature12777
- Rezaee F, Meednu N, Emo JA, et al. Polyinosinic: polycytidylic acid induces protein kinase D-dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells. J Allergy Clin Immunol 2011;128:1216-24. https://doi.org/10.1016/j.jaci.2011.08.035