DOI QR코드

DOI QR Code

Analysis of the Engineering Characteristics of Casein Polymer-Treated Soil Based on Soil Type

시료 유형에 따른 카제인 폴리머 처리토의 공학적 특성 분석

  • Jung, Sang-Ho (KUMHO Engineering & Construction Co., Ltd.) ;
  • Jang, Chaewoon (Dept. of Civil Engineering, Chungbuk National Univ.) ;
  • Lee, Jeong Yoon (Dept. of Civil Engineering, Chungbuk National Univ.) ;
  • Lee, Uichan (Dept. of Civil Engineering, Chungbuk National Univ.) ;
  • Ryou, Jae-Eun (Dept. of Civil Engineering, Chungbuk National Univ.) ;
  • Jung, Jongwon (School of Civil Engineering, Chungbuk National Univ.)
  • Received : 2024.09.02
  • Accepted : 2024.09.18
  • Published : 2024.10.31

Abstract

Chemical ground reinforcement involves enhancing the mechanical properties of soil through chemical reactions. Existing ground reinforcement materials pose challenges, including environmental pollution during production and use, pH fluctuations caused by leaching into groundwater, and ecological disturbances. This study investigates the engineering performance of soils treated with casein polymer, a milk-derived, eco-friendly reinforcement material. The performance assessment was carried out by measuring unconfined compressive strength and hydraulic conductivity across different soil types, including Jumunjin sand, granite weathered soil, and soft soils. The analysis examined the relationship between unconfined compressive strength, hydraulic conductivity, and soil type. The findings indicate significant correlations based on the concentration of casein polymer and soil type. The outcomes of this study provide foundational data for the application of casein polymer in soil reinforcement efforts.

화학적 지반보강은 재료의 화학적 반응을 통해 지반의 역학적 성능을 확보하는 것을 의미한다. 기존에 활용되는 지반보강 재료는 제조 및 활용 간 대기오염, 지하수 용출로 인한 pH 변화 및 생태계 교란 등의 문제가 제기되었다. 따라서, 본 연구에서는 친환경 지반보강을 위해 우유로부터 기원된 카제인 폴리머로 처리된 시료의 공학적 성능이 분석되었다. 공학적 성능 분석은 일축압축강도 및 투수계수 측정을 통해 수행되었다. 활용된 시료는 주문진 표준사, 화강풍화토, 연약지반 시료이며 시료 유형에 따른 일축압축강도 및 투수계수가 분석되었다. 분석 결과, 카제인 폴리머의 함량 및 시료 유형에 따른 유의미한 상관관계가 도출되었다. 본 연구에서 도출된 결과는 카제인 폴리머의 지반 보강 적용 시 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A4A3029737)(RS-2024-00353644).

References

  1. Adamczuk, A. and Jozefaciuk, G. (2022), "Impact of Chitosan on the Mechanical Stability of Soils", Molecules, Vol.27, No.7, 2273.
  2. Afrin, H. (2017), "A Review on Different Types Soil Stabilization Techniques", Int. J. Transp. Eng. Technol., Vol.3, No.2, pp.19-24. https://doi.org/10.11648/j.ijtet.20170302.12
  3. Archibong, G.A., Sunday, E.U., Akudike, J.C., Okeke, O.C., and Amadi, C. (2020), "A Review of the Principles and Methods of Soil Stabilization", Int. J. Adv. Acad. Res. Sci., Vol.6, No.3, pp. 2488-9849.
  4. Bakhshizadeh, A., Khayat, N., and Horpibulsuk, S. (2022), "Surface Stabilization of Clay Using Sodium Alginate", Case Stud. Constr. Mater., Vol.16, e01006.
  5. Butt, W.A., Gupta, K., and Jha, J.N. (2016), "Strength behavior of Clayey Soil Stabilized with Saw Dust Ash", Int. J. Geo-Eng., Vol.7, No.1, pp.1-9. https://doi.org/10.1186/s40703-016-0015-x
  6. Chang, I., Im, J., Prasidhi, A.K., and Cho, G.C. (2015), "Effects of Xanthan Gum Biopolymer on Soil Strengthening", Constr. Build. Mater., Vol.74, pp.65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  7. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J., and Cho, G.C. (2020), "Review on Biopolymer-based Soil Treatment (BPST) Technology in Geotechnical Engineering Practices", Transp. Geotech., Vol.24, 100385.
  8. Cho, H., Jun, M., Lee, E.S., and Hong, W.T. (2024), "Stiffness Characterization of Biopolymer-treated Sandy Soils using Shear Wave Velocity", J. Korean Geotech. Soc., Vol.40, No.3, pp.55-63.
  9. Choi, S.G., Chae, K.H., and Park, S.S. (2015), "Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge", J. Korean Geotech. Soc., Vol.31, No.1, pp.37-46. https://doi.org/10.7843/kgs.2015.31.1.37
  10. Firoozi, A.A., Guney Olgun, C., Firoozi, A.A., and Baghini, M.S. (2017), "Fundamentals of Soil Stabilization", Int. J. Geo-Eng., Vol.8, pp.1-16. https://doi.org/10.1186/s40703-016-0038-3
  11. Gidebo, F.A., Yasuhara, H., and Kinoshita, N. (2023), "Stabilization of Expansive Soil with Agricultural Waste Additives: A Review", Int. J. Geo-Eng., Vol.14, No.1, 14.
  12. Hassan, M.E.S., Bai, J., and Dou, D.Q. (2019), "Biopolymers; Definition, Classification and Applications", Egypt. J. Chem., Vol.62, No.9, pp.1725-1737. https://doi.org/10.21608/ejchem.2019.6967.1580
  13. Hussein, A.H., Muhauwiss, F.M., and Abdul-Jabbar, R.A. (2023), "Collapsibility of Gypseous Soil Treated with Pectin-Biopolymer through Leaching", J. Eng., 2023.
  14. Im, J., Chang, I., and Cho, G.C. (2021), "Effects of Malonic Acid Crosslinked Starch for Soil Strength Improvement", Transp. Geotech., Vol.31, 100653.
  15. Jerez Lazo, C., Lee, N., Tripathi, P., Joykutty, L., Jayachandran, K., and Lee, S.J. (2024), "A Fungus-based Soil Improvement Using Rhizopus Oryzae Inoculum", Int. J. Geo-Eng., Vol.15, No.1, 18.
  16. Jun, K.J., Oh, M., and Yune, C.Y. (2017), "Laboratory Test for the Performance of Grouting under Hydrostatic Pressure", J. Korean Geotech. Soc., Vol.33, No.10, pp.49-58.
  17. Khachatoorian, R., Petrisor, I.G., Kwan, C.C., and Yen, T.F. (2003), "Biopolymer Plugging Effect: Laboratory-pressurized Pumping Flow Studies", J. Pet. Sci. Eng., Vol.38, No.1-2, pp.13-21. https://doi.org/10.1016/S0920-4105(03)00019-6
  18. Kong, X., Wang, G., Liang, Y., Zhang, Z., and Cui, S. (2022), "The Engineering Properties and Microscopic Characteristics of High-liquid-limit Soil Improved with Lignin", Coatings, Vol.12, No.2, 268.
  19. Moghal, A.A.B. and Vydehi, K.V. (2021), "State-of-the-art Review on Efficacy of Xanthan Gum and Guar Gum Inclusion on the Engineering behavior of Soils", Innov. Infrastruct. Solut., Vol.6, pp.1-14. https://doi.org/10.1007/s41062-020-00383-y
  20. Mujah, D., Shahin, M.A.M and Cheng, L. (2017), "State-of-the-art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization", Geomicrobiol. J., Vol.34, No.6, pp.524-537. https://doi.org/10.1080/01490451.2016.1225866
  21. Oluseyi, T., Olayinka, K., and Adeleke, I. (2011), "Assessment of Ground Water Pollution in the Residential Areas of Ewekoro and Shagamu due to Cement Production", Afr. J. Environ. Sci. Technol., Vol.5, No.10, pp.786-794.
  22. Pushpakumara, B. H. J. and Mendis, W. S. W. (2022), "Suitability of Rice Husk Ash (RHA) with Lime as a Soil Stabilizer in Geotechnical Applications", International Journal of Geo-Engineering, Vol.13, No.1, p.4.
  23. Ryou, J.E. and Jung, J. (2023), "Characteristics of Thermo-gelation Biopolymer Solution Injection into Porous Media", Constr. Build. Mater., Vol.384, 131451.
  24. Ryou, J.E., Lee, J.Y., Hong, W.T., Yang, B., and Jung, J. (2024), "Effects of Curing and Soil Type on Unconfined Compressive Strengths and Hydraulic Conductivities of Thermo-gelation Biopolymer Rreated Soils", Constr. Build. Mater., Vol.432, 136493.
  25. Singh, R., Gautam, S., Sharma, B., Jain, P., and Chauhan, K.D. (2021), "Biopolymers and their Classifications", In Biopolymers and their Industrial Applications, Elsevier, pp.21-44.
  26. Smidsrod, O., Moe, S., and Moe, S. T. (2008), Biopolymer chemistry, Tapir Academic Press.
  27. Sujatha, E.R. and Kannan, G. (2022), "An Investigation on the Potential of Cellulose for Soil Stabilization", Sustainability, Vol.14, No.23, 16277.
  28. Zhao, Y., Zhuang, J., Wang, Y., Jia, Y., Niu, P., and Jia, K. (2020), "Improvement of Loess Characteristics Using Sodium Alginate", Bull. Eng. Geol. Environ., Vol.79, pp.1879-1891. https://doi.org/10.1007/s10064-019-01675-z