• Title/Summary/Keyword: Soil type

Search Result 2,474, Processing Time 0.027 seconds

A Study for Characteristics of Geofiber Reinforced Soil System Practiced on Stone Gabion Bank of River (하천 돌망태 호안에 적용된 토목섬유보강토공법의 녹화 특성)

  • Jeong, Dae-Young;Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.81-90
    • /
    • 2008
  • Recently, geofiber(polyester) reinforced soil was added on soil-seed mixture spray to control erosion and to improve vegetation growth on rocky slope sites. This research was conducted to compare vegetation effects and soil hardness on three types of soil-seed mixture spray on stone gabion river bank [A type : soil-seed mixture spray underlying 30cm thick sand with geofiber(geofiber reinforced soil system), B type : soil-seed mixture spray underlying 30cm thick sand without geofiber, C type : soil-seed mixture spray]. Evaluation were made concerning vegetation coverage, soil hardness and moisture content. The results of this study showed that A type system was effective for the growth of vegetation and soil hardness when compareed to B type and C type. A type and B type showed higher covering rate than C type on stone gabion river bank, and especially A type showed the highest covering rate. Soil hardness and water content were high on A type vegetation system compared to B type and C type. We noted that high soil hardness and high moisture content with geofiber(geofiber reinforced soil system) were effective both to control erosion from water current impact and to be high coverage and species of vegetation on stone gabion river bank.

A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea (국내 저관리 경량형 옥상녹화용 식생기반재의 이화학적 특성 및 탄소고정량 비교 분석)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Lee, Hang-Goo;Park, Hwan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.115-125
    • /
    • 2015
  • This study was carried out to analyze comparison of carbon storage and physicochemical properties of vegetation soil for extensive green rooftop established at Seoul National University in september 2013. For this study, 42 plots were made by 2 kinds of vegetation soil including A-type and B-type. A-type vegetation soil plots were made of 90% perlite and 10% humus and B-type vegetation soil plots were made of 60% perlite, 20% vermiculite, 10% coco peat and 10% humus. This study used 6 kinds of plants which are Aster koraiensis, Sedum takesimense, Zoysia japonica Steud, Euonymus japonica, Rhododendron indicum SWEET and Ligustrum obtusifolium. Field research was carried out in 11 months after planting. Physiochemical properties of B-type vegetation soil plots were better than A-type vegetation soil plots in every way and soil carbon content was also higher at B-type vegetation soil plots as well. B-type vegetation soil plots were maintained 10 to 20% higher soil water content than A-type vegetation soil plots of the study period. The species of herb which showed the best carbon storage was Zoysia japonica Steud at B-type vegetation soil plots. The species of shrub which showed the best carbon storage was Ligustrum obtusifolium at B-type vegetation soil plots. Plants generally showed better growth at B-type vegetation soil plots and B-type vegetation soil plots were higher than A-type vegetation soil plots in soil carbon stock.

Effect of Structural Type of Clay Minerals on Physical Properties of Mountainous Grassland Soils

  • Choi, Seyeong;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.807-812
    • /
    • 2016
  • Soil amendment, especially addition of clay minerals, has been widely conducted to improve the physical and chemical properties of cultivated soils. However, there are no systematic studies on the effects of the structural type of clay minerals added. This study was conducted to investigate the effects of structural type of clay minerals on physical properties of soils. Two experimental soils, layer-dominant and granule-dominant ones, were mixed with either a layer-type smectite or a granule-type zeolite at a level of 2.0 wt%. It was observed that water permeability of soils was decreased by smectite whereas not significantly changed by zeolite. This effect was much greater in layered clay-dominant soil than in granular clay-dominant soil. Our results clearly indicated that the relationship of structural type between a soil and an amendment plays a decisive role in the soil properties. Therefore, it is highly recommended that the structural types of both soil and amendment be taken into consideration for soil amendment by clay minerals.

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF

Growth Characteristics of Herbaceous Plants by Soil Condition to Revitalize the Urban Agriculture (도시농업 활성화를 위한 토양조건별 초본식물의 생육특성)

  • Park, Won Jei;Han, Kyung Hwan;Kwon, Soon Hyo;Park, Mi Ok;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This study is carried out to find the most optimal soil-plant combination in the urban agriculture by analyzing the association of soil base material which is being used in the urban agriculture with the growth of plants. 4 types of easily purchased soil (bed soil(A), animal vermicast soil(B), earth worm soil(C) and matured compost(D)) verified in aspects of effect and safety of soil in terms of growth of crop is selected as experimental soil and B, C, D type soils are mixed with granite soil at the ratio of 7 : 3. And granite soil(E) is set as a controlled soil and is compared to verify the effect of the experimental mixed soil. Herbaceous plants are classified into the fruit vegetables (Lycopersicon esculentum Mill. and Capsicum annuum L.), leafy vegetables (Brassica campestris L. ssp. Pekinensis and Lactuca sativa L.), medicinal vegetables (Chrysanthemum zawadskii var. latilobum and Liriope platyphylla F. T. Wang & T. Tang). The results of comparison of growth of herbaceous plants in different soil types showed that fruit vegetables and leafy vegetables in general had excellent growth in D type soil mixture and A type soil in general and had the poorest growth in E type (controlled) soil. 'Chrysanthemum zawadskii var. latilobum' had the excellent growth in D type, B type, C type mixed soil and A type soil and E type (controlled) soil are followed in order. In the case of 'Liriope platyphylla F. T. Wang & T. Tang', the difference in growth by each soil was shown to be insignificant. Therefore, the soil applied in the urban agriculture varies depending on each species of herbaceous plants, but it is considered effective to cultivate herbaceous plant which is economical and productive by using D type mixed soil which can be recycled and inexpensive compared with other experimental soils in the urban agriculture.

Effects of Artificial Substrate Type, Soil Depth, and Drainage Type on the Growth of Sedum sarmentosum Grown in a Shallow Green Rooftop System (저토심 옥상녹화 시스템에서 돌나물(Sedum sarmentosum)의 생육에 대한 인공배지 종류, 토심, 그리고 배수 형태의 효과)

  • 허근영;김인혜;강호철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.102-112
    • /
    • 2003
  • This study was carried out to research and develop a shallow green rooftop system which would require low maintenance and therefore could be used for existing rooftops. To achieve these goals, the conceptual model was induced by past studies and the experimental systems were deduced from the conceptual model. On the growth of Sedum sarmentosum grown in these rooftop systems, the effects of artificial substrate type, soil depth, and drainage type were investigated from 3 April to 11 October 2002. Artificial substrates were an alone type and a blending type. The alone type was an artificial substrate formulated by blending crushed porous glass with bark(v/v, 6:4). The blending type was formulated by blending the alone type with loam(v/v, 1:1). Soil depths were 5cm, loom, and 15cm. Drainage types were a reservoir-drainage type and a drainage type. The reservoir-drainage type could keep water and drain excessive water at the same time. The drainage type could drain excessive water but could not keep water. Covering area, total fresh and dry weight, visual quality, and water content per 1g dry matter were measured. All the variables were analyzed by correlation analysis and factor analysis. The results of the study are summarized as follows. The growth increment was higher in the blending type than in the alone type, the highest in loom soil depth and higher in the reservoir-drainage type than in the drainage type. The growth quality was higher in the blending type than in the alone type, the highest in l0cm soil depth, and higher in the drainage type than in the reservoir-drainage type. In consideration of the permissible load on the existing rooftops and the effects of the treatments on the growth increment and quality, the system should adopt the blending type in artificial substrate types, 5~10cm in soil depths, and the drainage type in drainage types. This system will be well-suited to the growth of Sedum sarmentosum, and when the artificial substrate was in field capacity, the weight will be 75~115kg/$m^2$.

Physicochemical Properties of Soil in Pine (Pinus densiflora for. erecta Uyeki) Forests (금강형 소나무림에 있어서 토양의 이화학적 성질)

  • Joo, Sung-Hyun;Jung, Sung-Cheol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.31-37
    • /
    • 2001
  • Uyeki(1928) classified Pinus densiflora into six ecotypes(Northeastem type, Middle-southern flat type, middle-southern upland type, Wibong type, Ankang type, and Geumgang type) based on the pine tree type. The bark color of Geumgang type was ash-brown color on the lower parts of stem and yellowed color on the upper parts of stem. We investigated the physicochemical properties of soil forests to obtain basic data for preservation of exellent pine (Pinus densiflora for. erecta Uyeki). The results were as follows; The soil texture of the Pinus densiflora for. erecta Uyeki forests were showed nearly as sandy loam, that is, sand, silt and clay were consisted of 72%, 15% and 13%, respectively. Soil acidity(pH 4.6) was lower than Korea average forest soil acidity(pH 5.2). The average contents of available phosphate was 11.7ppm at Sokwang-ri, 26.8ppm at Mt. Eungbong, 24.2ppm at Mt. Kumma. It was the lowest at Uljin(4.6ppm). The contents of carbon was 6.2% at Mt. Chungok, 6.1% at Mt. Eungbong. This value was more than average of Korea forest soil.

  • PDF

Prediction of Bulk Type Trailer Capacity in Consideration of Soil Physical Properties of Paddy Field (논 토양의 물리적 특성을 고려한 산물형 트레일러의 적정용량 예측)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A computer simulation was carried out to determinate the optimum capacity of bulk type trailer which is used as a tractor attachment. Soil physical properties. such as soil moisture content. bulk density, soil hardness and soil texture were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil texture of the investigated area was silty loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1.500 to 1.700 kg/㎥. Soil hardness ranged between 1 to 18 kg/$\textrm{cm}^2$. Soil hardness incorporate the effects of many soil physical properties such as moisture content texture and bulk density, and so the range of soil hardness was greater than any other physical properties. The capacity of bulk type trailer was above 3000 kg$_{f}$ fer the most of the investigated area. and mostly in the range of 4000 to 6000 kg$_{f}$ depending upon the slip. But for the soft soil area such as Andong and Namyang. tractor itself had mobility problem and showed minus trailer capacity for some places. For this area. the capacity of bulk type trailer ranged between 1000 and 2000 kg$_{f}$ mostly so bulk type trailer should be designed as a small capacity compared to the other area.ared to the other area. area.

Variation in Phytotoxicity, Movement and Residual Activity of Herbicides in Soil (토양 중에 있어서 제초제의 약해약동, 이동 및 잔효지속성)

  • Hwan-Seung Ryang;Suk-Young Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.3
    • /
    • pp.31-46
    • /
    • 1978
  • In order to secure the proper use of herbicides that are frequently used in Korea, the behavior of herbicides in various type of soil were studied. This study includes the variation of phytotoxicity, leaching and movement, and residual activity period of herbicides depending upon the type of soil etc. Experiments were also conducted to establish a guideline for the selection of herbicides according to the type of soil and the proper use of each herbicide in various type of soil in Korea. Experimental results showed that the behavior of herbicides could be characterized based on the series or kind of herbicides and devided into two major groups. One group (nitrofen. CNP, benthiocarb and butachlor) of herbicides showed relatively little crop injury and was very dependable. The action of this group was not remarkably influenced by soil components, rainfall and the quantity of herbicide used with the type of soil that had small adsorption capacity such as most of soil in Korea. The other group(simazine, 2, 4-D. linuron, alachlor and simetryne) showed a wide variation in it's action and retained potentially injurious effect. This group was very susceptable to using condition as well as the type of soil itself. Based on the results of various experiments the disappearance of the residual activity period of major herbicides used in upland and paddy field and the related factors were explained. It is believed that the results of this study can be used as a base for the establishment of a guideline for the proper use of each herbicide and can suggest a direction of developing new herbicides.

  • PDF

Physico-Chemical Properties on the Management Groups of Paddy Soils in Korea (우리나라 논토양(土壤) 유형별(類型別) 이화학적(理化學的) 특성(特性))

  • Hur, Bong-Koo;Rim, Sang-Kyu;Kim, Yoo-Hak;Lee, Ke-Yup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.62-66
    • /
    • 1997
  • This study was designed to obtain the mean values of thirteen soil physico-chemical properties for different paddy soil management groups, and to serve the basic information for improving the soil using amendments. Computerized data on the results of detailed soil survey were used in this study. The clay contents in the B horizon of paddy soil management groups were 28.3% in the well adapted type, 11.8% in the sandy textured type, and 26.8% in the newly reclaimed type. Soil pH of B horizon in the paddy soil management groups except poorly drained type and acid sulfate type were higher than those of A horizon. In the river side paddy soils of well adapted type, the clay contents of A and B horizons were 16.8%, 23.1%, respectively, and soil organic matter contents of those horizons were 42g/kg, 18g/kg, respectively. And also available phosphate content of well adapted type was higher than the other types. Frequency of distribution of soil organic matter content levels in the B horizons of sandy textured type and newly reclaimed type were higher in the organic matter content range of below 10g/kg. And those of well adapted, poorly drained, and saline type were higher in the organic matter content range of 10~20g/kg. Correlation coefficients between 13 variables in the B horizon of well adapted type were all highly significant at 1% or 5% level, respectively.

  • PDF