DOI QR코드

DOI QR Code

Relationship between Flow Limit and Compression Index for Clayey Soils

점성토의 흐름한계와 압축지수의 상관관계에 관한 연구

  • 문홍득 (경상국립대학교 건설환경공과대학 건설시스템공학과) ;
  • 황금비 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 우승욱 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 김도협 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 김태헌 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 박성식 (경북대학교 공과대학 토목공학과)
  • Received : 2024.08.26
  • Accepted : 2024.10.13
  • Published : 2024.10.31

Abstract

Obtaining the compression index directly from consolidation tests is time-consuming; thus, it is often estimated using an empirical equation based on the liquid limit. However, the liquid limit measurement can introduce significant errors depending on the instrument or the experimenter. Therefore, this study proposes a new empirical equation for the compression index, utilizing the flow limit, which corresponds to the water content when the undrained shear strength of the clayey soil is zero. To achieve this, clayey soils of various compositions were prepared by mixing sand at proportions of 10, 20, and 30% with calcium-based and sodium-based bentonite. Liquid limit, flow limit, and consolidation tests were subsequently conducted. The results showed that the liquid and flow limits of sodium-based bentonite were 4-7 times higher than those of calcium-based bentonite. Additionally, the compression index differed significantly, ranging from 0.31-4.91. Conversely, regardless of bentonite type, the differences in liquid limit, flow limit, and compression index between the two clayey soils diminished as the sand content increased. The current linear empirical equation for the compression index was found unsuitable for sodium-based bentonite with high liquid limits; hence, a new exponential correlation was proposed. Consequently, the coefficient of determination for the exponential compression index equation based on the liquid limit was 0.81, while the equation using the flow limit achieved a coefficient of determination of 0.98, demonstrating a higher correlation compared to the liquid limit-based equation.

압밀시험으로부터 직접 압축지수를 구하는 것은 상당한 시간이 소요되므로 액성한계를 사용한 경험식으로 간편하게 구할 수 있다. 하지만 액성한계 측정시험은 측정기구나 실험자에 따라 상당한 오차가 발생할 수 있다. 이에 본 연구에서는 점성토의 비배수전단강도가 0일 때 함수비인 흐름한계를 이용하여 새로운 압축지수 경험식을 제안하였다. 이를 위해 칼슘계 및 소디움계 벤토나이트에 모래 함유량을 10, 20, 30%까지 섞어 다양한 점성토를 재성형한 다음, 액성한계, 흐름한계 및 압밀시험을 실시하였다. 칼슘계 벤토나이트보다 소디움계 벤토나이트의 액성한계와 흐름한계가 4~7배 정도 높게 나타났으며, 압축지수는 0.31과 4.91로 더 큰 차이를 보였다. 한편, 벤토나이트 종류에 관계없이 모래 함유량이 증가함에 따라 두 점성토의 액성한계, 흐름한계 및 압축지수의 차이는 감소하는 경향을 보였다. 기존 선형관계의 압축지수 경험식은 액성한계가 높은 소디움계 벤토나이트에는 적용이 어려웠으며, 새로운 지수형 압축지수 상관관계를 제안하였다. 그 결과 액성한계를 사용한 지수형 압축지수 경험식의 결정계수는 0.81이며, 흐름한계를 사용한 지수형 경험식의 경우 결정계수가 0.98로 액성한계 기반 경험식보다 더 높은 상관성을 보였다.

Keywords

Acknowledgement

본 연구는 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2021R1I1A3059731).

References

  1. Al-Khafaji, A., Buehler, A., and Druszkowski, E. (2019), "Validation of Compression Index Approximations Using Soil Liquid Limit", In Contemporary Issues in Soil Mechanics: Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018-The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE) (pp. 31-41). Springer International Publishing.
  2. Azzouz, A. S., Krizek, R. J., and Corotis, R. B. (1976), "Regression Analysis of Soil Compressibility", Soils and Foundations, Vol.16, No.2, pp.19-29. https://doi.org/10.3208/sandf1972.16.2_19
  3. Bilgen, Gamze, Capar, O, Bozacioglu, Dilek, and Dagli, Emrah. (2018), "Effect of Blast Furnace Slag on Strength and Compressibility of Bentonite Clay", Proc. of 13th International congress on advances in civil engineering.
  4. Boekel, P. and Peerlkamp, P. L. (1956), "Soil Consistency as a Factor Determining the Soil Structure of Clay Soils", Netherlands Journal of Agricultural Science, Vol.4, No.1, pp.122-125. https://doi.org/10.18174/njas.v4i1.17792
  5. Diman, S. F. and Wijeyesekera, D. C. (2008), Swelling characteristics of bentonite clay mats.
  6. Hansbo, S. (1957), "New Approach to the Determination of the Shear Strength of Clay by the Fall-cone Test", Statens geotekniska institut.
  7. Hough, B. K. (1957), Basic Soils Engineering.
  8. Jang, J.W., Choi, S. M., and Park., C. S. (2001), "A Study on the Relationship between the Physical Properties of Soil and the Compression Index of Soft Clay in Gyungnam Coastal Region", Journal of Korean Society of Coastal and Ocean Engineers, Vol.13, No.4, pp.282-289.
  9. Jin, B. I. and Chun, B. S. (1977), "Experimental Studies on A. Casagrande's Plasticity Chart", Journal of the Korean Society of Civil Engineers, Vol.25, No.2, pp.85-94.
  10. Karakan, E. (2022), "Comparative Analysis of Atterberg Limits, Liquidity Index, Flow Index and undrained Shear Strength Behavior in Binary Clay Mixtures", Applied Sciences, Vol.12, No.7, 8616.
  11. Karakan, E. (2023), "Flow Index-liquid Limit Relationship by Fall-cone Tests in Clay-sand Mixtures", Engineering Science and Technology, an International Journal, Vol.41, 101405.
  12. Kim, B. T., Kim, Y. S., and Bae, S. K. (2001), "Experimental Studies on A. Casagrande's Plasticity Chart", Journal of the Korean Geotechnical Society, Vol.17, No.6, pp.25-36.
  13. Kim, C. K., Yeo, J. S., Moon, Y. S., Park, H. Y., and Kim, T. H. (2017), "Liquid and Plastic Limits of Cohesive Soil by Static and Dynamic Test Methods and Tester", Journal of the Korean Geotechnical Society, Vol.33, No.3, pp.5-15.
  14. Kim, D.-H. (2024), The Study on the Water Content at which the Undrained Shear Strength of Clay-Sand Mixtures Becomes Zero, Mater thesis, Kyungpook National University.
  15. Komine, H. (2004), "Simplified Evaluation for Swelling Characteristics of Bentonites", Engineering geology, Vol.71, No.3-4, pp.265-279. https://doi.org/10.1016/S0013-7952(03)00140-6
  16. McBride, R. A. (2008) , "Soil Consistency: Upper and Lower Plastic Limits", Soil Sampling and Methods of Analysis, Vol.2, pp.761-770.
  17. Nishida, Y. (1956), "A Brief Note One Compression Index of Soil", Journal of the Soil Mechanics and Foundation Engineering Proceedings of The American Society of Civil Engineers, 82.
  18. Park, N. Y. (1985), Comparative Study of Undrained Shear Strength Measurements of a Soft Clayey Soils, Master thesis, Myongji University.
  19. Park, S. S. and Nong, Z. (2013), "A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength", Journal of the Korean Geotechnical Society, Vol.29, No. 1, pp.73-84.
  20. Pokharel, B. and Siddiqua, S. (2021), "Effect of Calcium Bentonite Clay and Fly Ash on the Stabilization of Organic Soil from Alberta, Canada", Engineering Geology, Vol.293, 106291.
  21. Raj, A.D. and Toshniwal, V. (2019), Characteristic Properties of Bentonite Clay and use of Nanomaterials in Stabilizing its Expansive Behavior, International Journal of Science and Research.
  22. Salah, B., S. Gaber, M., and Kandil, A. H. T. (2019), "The Removal of Uranium and Thorium from their Aqueous Solutions by 8-hydroxyquinoline Immobilized Bentonite", Minerals, Vol.9, No.10, 626.
  23. Sagnak, M. (2018), Stabilization of Bentonite and Kaolinite Clays Using Recycled Gypsum and Liquid Sodium Silicate, Ph.D. thesis, University of Delaware.
  24. Schmertmann, J. H. (1955), "The Undisturbed Consolidation behavior of Clay", Trans. ASCE, Vol.120, pp.1201-1233. https://doi.org/10.1061/TACEAT.0007231
  25. Skempton, A. W. (1944). "Notes on the Compressibility of Clays", Q. J. Geol. Soc. London, Vol.100, No.1-4, pp.119-135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
  26. Sowers, G. F. (1965), "Consistency. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties", Including Statistics of Measurement and Sampling, Vol.9, pp.391-399.
  27. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice. 2nd edn., Wiley: New York.
  28. Widjaja, B. and Inkiriwang, C. B. (2016), "Empirical Correlations Among Liquid Limit, Clay Fraction, and Specific Surface Area for Kaolin and Calcium Bentonite Compounded Samples", In International Conference on Advances in Civil and Structural Engineering.
  29. Wijeyesekera, D., Loh, E., Diman, S., John, A., Zainorabidin, A., and Ciupala, M. (2012), "Sustainability Study of the Application of Geosynthetic Clay Liners in Hostile and Aggressive Environments", OIDA International Journal of Sustainable Development, Vol.5, No.6, pp.81-96.
  30. Xu, X., Oh, M., and Park, J. (2017), "Assessment of Hydraulic Conductivity of Modified Bentonite and Local Soil Mixture under Salt Water Condition", Journal of the Korean Geotechnical Society, Vol.33, No.11, pp.97-104. https://doi.org/10.7843/KGS.2017.33.11.97
  31. Yang, Y. L., Reddy, K. R., Du, Y. J., and Fan, R. D. (2018), "Sodium Hexametaphosphate (SHMP)-amended Calcium Bentonite for Slurry Trench Cutoff Walls: Workability and Microstructure Characteristics", Canadian Geotechnical Journal, Vol.55, No.4, pp.528-537. https://doi.org/10.1139/cgj-2017-0291
  32. Zhirong, L., Uddin, M. A., and Zhanxue, S. (2011), "FT-IR and XRD Analysis of Natural Na-bentonite and Cu (II)-loaded Na-bentonite", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol.79, No.5, pp.1013-1016. https://doi.org/10.1016/j.saa.2011.04.013