DOI QR코드

DOI QR Code

Analysis of Ventilation Characteristics in Ship Fuel-Preparation Rooms During Ammonia Leakage

암모니아 누출 시 선박 연료 준비실의 환기 특성 분석

  • Jin-Woo Bae (Korea Institue of Maritime and Fisheries Technology) ;
  • Bo Rim Ryu (Division of Marine System Engineering, National Korea Maritime & Ocean University) ;
  • Kweon-Ha Park (Division of Mechanical Engineering, National Korea Maritime & Ocean University)
  • 배진우 (한국해양수산연수원) ;
  • 류보림 (국립한국해양대학교 기관시스템공학과) ;
  • 박권하 (국립한국해양대학교 기계공학부)
  • Received : 2024.05.28
  • Accepted : 2024.08.29
  • Published : 2024.08.31

Abstract

Ammonia is an eco-friendly marine fuel that does not emit carbon dioxide and is a primary contributor to global warming. Despite its benefits, ammonia poses significant risks owing to its toxicity, explosiveness, and corrosiveness, thus necessitating robust safety measures to manage its potential leaks on ships. This study investigates the characteristics of ammonia leaks and ventilation dynamics in a ship fuel-preparation room, with emphasis on the ef ect of varying the positions of air supply and exhaust outlets. The leakage rate is set at 0.1 kg/s, with a ventilation rate of 30 ACH (air changes per hour). The scenario with air supply at Aft - Top - Stbd and exhaust at Fwd - Top - Stbd (Case 1) results in the highest average ammonia concentration after 100 s. Conversely, the scenario with air supply at Aft - Bottom - Stbd and exhaust at Fwd - Bottom - Port (Case 14) results in the lowest concentration. After 50 s, Case 1 indicate ammonia concentrations exceeding 1500 ppm toward Aft, whereas Case 14 indicate a consistent stagnation zone along the Fwd wall. The distribution of ammonia concentration and velocity varies by height owing to the positioning of the air supply and exhaust outlets as well as the equipment configuration, thus resulting in higher concentrations in areas with slower airflow. When a small amount of ammonia leaked at 0.1 kg/s for 10 s, explosive gas formed near the leak point at a height of approximately 1 m, thus indicating an extremely low risk of explosion from slight ammonia leaks. This study confirms that the optimal combination of air supply and exhaust-duct positions can effectively control ammonia concentration. This finding is expected to contribute to the establishment of design standards and ensure safety when using ammonia as marine fuel.

암모니아는 지구 온난화의 주범인 이산화탄소 배출이 없는 선박용 친환경 연료이다. 그러나 암모니아는 독성가스이면서 동시에 폭발성 및 부식성 가스로서, 선박용으로 사용되려면 누출에 대비한 안전성이 충분히 확보되어야 한다. 본 연구에서는 선박 연료 준비실에서 암모니아 누출이 발생한 경우, 급·배기구의 위치 변화에 따른 누출 특성에 대하여 해석을 수행하고 환기 거동을 분석하였다. 누출량은 0.1kg/s로 하고 통풍량은 30 ACH로 하였다. 급기구가 Aft-Top-Stbd, 배기구가 Fwd-Top-Stbd 에 위치 할 경우(Case 1)가 100 초뒤 평균 암모니아 농도가 가장 높았고 급기구가 Aft-Bottom-Stbd, 배기구가 Fwd-Bottom-Port에 위치하는 경우(Case 14)가 가장 낮았다. 50초 이후 Case 1은 약 1500ppm 이상의 암모니아 가스가 Aft 쪽으로, Case 14는 Fwd 벽면으로 정체부가 일정하게 나타났다. 급·배기구 위치와 장비의 배치와 크기에 따라 높이별 암모니아 농도 및 속도가 다르게 분포되고 속도가 상대적으로 느린 부분에서 정체부가 발생되고 암모니아 농도가 높아졌다. 소량의 암모니아가 10초 동안 0.1kg/s로 누출할 경우 폭발가스의 범위가 높이 1m 정도로 누출 지점 근처에서 형성되어 소량의 암모니아 누출 시 폭발성은 매우 낮았다. 본 연구에서 최적의 급·배기구 위치 조합을 통해 암모니아 농도를 효과적으로 제어할 수 있음을 확인하였다. 이는 암모니아를 선박 연료로 사용할 때 안전성을 확보하기 위한 설계기준 마련에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 산업통상자원부 및 한국산업기술기획평가원의 연구비 지원에 의한 연구임(RS-2022-00144116, 선박용 암모니아 연료공급 시스템 개발 및 실증), (RS-2023-00285272, 중대형 선박용 암모니아 내연기관 개발 및 실증).

References

  1. Anjana, N. S., M. H. Nair, K. S. Sajith, A. Amarnath, and I. Indu(2018), Accidental Release of Ammonia From a Storage Tank and the Effects of Atmosphere on the Affected Area Using ALOHA, Indian journal of scientific research, Vol. 21, No. 1, pp. 1-8.
  2. Ampah, J. D., A. A. Yusuf, S. Afrane, C. Jin, and H. Liu (2021), Reviewing two decades of cleaner alternative marine fuels: Towards IMO's decarbonization of the maritime transport sector, Journal of Cleaner Production, Vol. 320, 128871.
  3. Chai, W. S., Y. Bao, P. Jin, G. Tang, and L. Zhou(2021), A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renewable and Sustainable Energy Reviews, Vol. 147, 111254.
  4. Cui, W., Y. Yuan, L. Tong, and B. Shen(2023), Numerical simulation of hydrogen leakage diffusion in seaport hydrogen refueling station. International Journal of Hydrogen Energy, Vol. 48, No. 63, pp. 24521-24535.
  5. Dias, V., M. Pochet, F. Contino, and H. Jeanmart(2020), Energy and Economic Costs of Chemical Storage, Frontiers in mechanical engineering, Vol. 6, No. 21.
  6. HSE(2004), The Selection and Use of Flammable Gas Detectors.
  7. Kim, H. J.(2022), Quantitative Risk Assessment of Ammonia Propulsion Ship Fuel Supply System for Minimizing Human Casualties. Doctoral dissertation, Pusan National University Graduate School.
  8. Lee, C. Y. and D. H. Cho(2022), Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen, Journal of the Korean Society of Marine Environment & Safety, Vol. 28, No. 2, pp. 385-393.
  9. Li, X. J., R. P. Zhou, and D. Konovessis(2016), CFD analysis of natural gas dispersion in engine room space based on multi-factor coupling. Ocean Engineering, Vol. 111, pp. 524-532.
  10. Orozco, J. L., J. Van Caneghem, L. Hens, L. Gonzalez, R. Lugo, S. Diaz, and I. Pedroso(2019), Assessment of an Ammonia Incident in the Industrial Area of Matanzas, Journal of Cleaner Production, Vol. 222, pp. 934-941.
  11. Republic of Korea(2023), CCC9/3/2, Study on Safety Assessment of Ammonia Toxicity.
  12. Salamonowicz, Z., M. Majder-Lopatka, A. Dmochowska, W. Rogula-Kozlowska, A. Piechota-Polanczyk, and A. Polanczyk (2022), Ammonia Dispersion in the Closed Space of an Ammonia Engine Room with Forced Ventilation in an Industrial Plant., Atmosphere, Vol. 13, No. 7, 1062.
  13. Schnurr, R. E. and T. R. Walker(2019), Marine transportation and energy use, Reference Module in Earth Systems and Environmental Sciences.
  14. Seo, H. S. and I. J. Hwang(2023), Numerical Study on the Diffusion Characteristics and Ventilation under Hydrogen Leakage in the Underground Hydrogen Facilities, The KSFM Journal of Fluid Machiner, Vol. 26, No. 5, pp. 111-117.
  15. Seo, Y. K. and S. J. Han(2021) Economic evaluation of an ammonia-fueled ammonia carrier depending on methods of ammonia fuel storage. Energies, Vol. 14, 8326.
  16. Shin I. S., J. M. Cheon, and J. H. Lee(2023), A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel, Journal of the Korean Society of Marine Environment & Safety, Vol. 29, No. 7, pp. 964-970.
  17. Tan, W., D. Lv, X. Guo, H. Du, L. Liu, and Y. Wang (2020), Accident Consequence Calculation of Ammonia Dispersion in Factory Area, Journal of Loss Prevention in the Process Industries, Vol. 67, 104271.
  18. Tan, W., H. Du, L. Liu, T. Su, and X. Liu(2017), Experimental and numerical study of ammonia leakage and dispersion in a food factory, Journal of Loss Prevention in the Process Industries, Vol. 47, pp. 129-139.
  19. Thomas, G.(2006), Potential Roles of Ammonia in a Hydrogen Economy, Energy, pp. 1-23.
  20. Yarandi, M. S., M. Mahdinia, J. Barazandeh, and A. Soltanzadeh(2021), Evaluation of the toxic effects of ammonia dispersion: Consequence analysis of ammonia leakage in an industrial slaughterhouse, Medical gas research, Vol. 11, No. 1, pp. 24-29.